In order to simulate micromachining of Ti-Nb medical devices produced in situ by selective laser melting, it is necessary to use constitutive models that allow one to reproduce accurately the material behavior under extreme loading conditions. The identification of these models is often performed using experimental tension or compression data. In this work, compression tests are conducted to investigate the impact of the loading conditions and the laser-based powder bed fusion (LB-PBF) building directions on the mechanical behavior of β-Ti42Nb alloy.
View Article and Find Full Text PDF