Corneal lubrication is the most common treatment for relieving the signs and symptoms of dry eye and is considered to be largely palliative with no regenerative functions. Here we challenge this notion by demonstrating that wetting the desiccated cornea of an aqueous-deficient mouse model with the simplest form of lubrication, a saline-based solution, is sufficient to rescue the severely disrupted collagen-rich architecture of the stroma, the largest corneal compartment that is essential to transparency and vision. At the single cell level we show that stromal keratocytes responsible for maintaining stromal integrity are converted from an inflammatory state into unique reparative cell states by lubrication alone, thus revealing the extensive plasticity of these cells and the regenerative function of lubricating the surface.
View Article and Find Full Text PDFBacteria can be programmed to deliver natural materials with defined biological and mechanical properties for controlling cell growth and differentiation. Here, we present an elastic, resilient and bioactive polysaccharide derived from the extracellular matrix of sp. BCCS 001.
View Article and Find Full Text PDFThe enormous potential of multifunctional bilayer wound dressings in various medical interventions for wound healing has led to decades of exploration into this field of medicine. However, it is usually difficult to synthesize a single hydrogel with all the required capabilities simultaneously. This paper proposes a bilayer model with an outer layer intended for hydrogel wound treatment.
View Article and Find Full Text PDFIn the present study, the allantoin and silver nanoparticle (Ag NPs) loaded poly caprolactone/gelatin (PCL/GEL) nanofibers produced using electrospinning technique and their cyto-compatibility and wound healing activity were evaluated in vitro and in vivo. The SEM imaging revealed diameters of 278.8 ± 10 and 240.
View Article and Find Full Text PDFBiomater Sci
March 2023
Photothermal therapy (PTT) is a promising approach for treating cancer. However, it suffers from the formation of local lesions and subsequent bacterial infection in the damaged area. To overcome these challenges, the strategy of mild PTT following the high-temperature ablation of tumors is studied to achieve combined tumor suppression, wound healing, and bacterial eradication using a hydrogel.
View Article and Find Full Text PDFBackground And Aims: Microalgae are known as a promising source for food, pharmaceutical, and biofuel production while providing environmental advantages. The present study evaluates some newly isolated microalgal strains from north and southwest of Iran as a potential source for high-value products.
Methods: Primitive screening was carried out regarding growth parameters.
Tannic acid (TA), a natural polyphenol, is a hydrolysable amphiphilic tannin derivative of gallic acid with several galloyl groups in its structure. Tannic acid interacts with various organic, inorganic, hydrophilic, and hydrophobic materials such as proteins and polysaccharides hydrogen bonding, electrostatic, coordinative bonding, and hydrophobic interactions. Tannic acid has been studied for various biomedical applications as a natural crosslinker with anti-inflammatory, antibacterial, and anticancer activities.
View Article and Find Full Text PDFThe bacterium Pantoea sp. BCCS 001 GH produces an exopolysaccharide (EPS) named Pantoan through using sugar beet molasses (SBM) as an inexpensive and widely available carbon source. This study aims to investigate the kinetics and optimization of the Pantoan biosynthesis using Pantoea sp.
View Article and Find Full Text PDFSignificant upsurge in animal by-products such as skin, bones, wool, hides, feathers, and fats has become a global challenge and, if not properly disposed of, can spread contamination and viral diseases. Animal by-products are rich in proteins, which can be used as nutritional, pharmacologically functional ingredients, and biomedical materials. Therefore, recycling these abundant and renewable by-products and extracting high value-added components from them is a sustainable approach to reclaim animal by-products while addressing scarce landfill resources.
View Article and Find Full Text PDFAmong all the biomaterials introduced in the field of bone tissue engineering, injectable platelet-rich fibrin (I-PRF) has recently gained considerable attention. I-PRF, as a rich source of biologically active molecules, is a potential candidate which can be easily obtained in bedside and constitutes several biological factors which can result in higher anti-bacterial, anti-inflammatory and regenerative capabilities. According to the studies evaluating the osteogenic efficacy of I-PRF, this biomaterial has exhibited favorable outcomes in terms of adhesion, differentiation, migration, proliferation and mineralization potential of stem cells.
View Article and Find Full Text PDFMost components in avian eggs, offering a natural and environmentally friendly source of raw materials, hold great potential in tissue engineering. An avian egg consists of several beneficial elements: the protective eggshell, the eggshell membrane, the egg white (albumen), and the egg yolk (vitellus). The eggshell is mostly composed of calcium carbonate and has intrinsic biological properties that stimulate bone repair.
View Article and Find Full Text PDFPurpose: Hepatic encephalopathy (HE) is a critical situation in which liver failure affects brain function. HE could result in a state of coma and death. The liver is the main organ for ammonium ion (NH ) metabolism.
View Article and Find Full Text PDFThe complexity of hard-to-treat diseases strongly undermines the therapeutic potential of available treatment options. Therefore, a paradigm shift from monotherapy toward combination therapy has been observed in clinical research to improve the efficiency of available treatment options. The advantages of combination therapy include the possibility of synchronous alteration of different biological pathways, reducing the required effective therapeutic dose, reducing drug resistance, and lowering the overall costs of treatment.
View Article and Find Full Text PDFFDA has approved iron oxide nanoparticles (IONs) coated with organic compounds as a safe material with less toxic effects compared with the naked metal ions and nanoparticles. In this study, the biological and physicochemical characteristics of a nanostructured iron-polysaccharide complexes (Nano-IPC) biosynthesized by Enterobacter sp. were evaluated.
View Article and Find Full Text PDFMicrobial exopolysaccharides (EPSs) have recently served as an efficient substrate for the production of biocompatible metal nanoparticles (NPs) given their favorable stabilizing and reducing properties due to the presence of polyanionic functional groups in their structure. In the present work, Pantoea sp. BCCS 001 GH was used to produce EPS-stabilized biogenic Fe NPs as a complex through a novel biosynthesis reaction.
View Article and Find Full Text PDFExopolysaccharide (EPS), as potential microbial base polysaccharide source, has plenty of applications due to its unique physicochemical structure. A sp. BCCS 001 GH bacterium with the ability to produce a high amount of EPS was identified by 16S rRNA gene sequencing and biochemical tests.
View Article and Find Full Text PDFThe newly discovered exopolysaccharide (EPS) produced by Pantoea sp. BCCS 001 GH, isolated from nectarine fruit and some of its physical properties were characterized. This paper examines precipitation, rheological behavior, emulsification, and antioxidant activities of EPS.
View Article and Find Full Text PDFA new technological approach to nanoparticle synthesis is using microorganisms, such as bacteria, which have the ability to synthesize nontoxic nanoparticles with high biocompatibility. In addition, bacteria have strict control over size, structure, shape, and dimension of produced nanoparticles. In the present work, Fe (III)-binding exopolysaccharide (Fe-EPS) nanoparticles were biosynthesized by Ralstonia pickettii sp.
View Article and Find Full Text PDFProduction of xanthan gum using immobilized cells of Xanthomonas campestris and Xanthomonas pelargonii grown on glucose or hydrolyzed starch as carbon sources was investigated. Calcium alginate (CA) and calcium alginate-polyvinyl alcohol-boric acid (CA-PVA) beads were used for the immobilization of cells. Xanthan titers of 8.
View Article and Find Full Text PDF