Publications by authors named "Seyoun Park"

Purpose: A wide array of benign and malignant lesions of the pancreas can be cystic and these cystic lesions can have overlapping imaging appearances. The purpose of this study is to compare the diagnostic accuracy of a radiomics-based pancreatic cyst classifier to an experienced academic radiologist.

Methods: In this IRB-approved retrospective single-institution study, patients with surgically resected pancreatic cysts who underwent preoperative abdominal CT from 2003 to 2016 were identified.

View Article and Find Full Text PDF

Hypoxia, or low oxygen tension, is a hallmark of the tumor microenvironment. The hypoxia-inducible factor-1α (HIF-1α) subunit plays a critical role in the adaptive cellular response of hypoxic tumor cells to low oxygen tension by activating gene-expression programs that control cancer cell metabolism, angiogenesis, and therapy resistance. Phosphorylation is involved in the stabilization and regulation of HIF-1α transcriptional activity.

View Article and Find Full Text PDF

Pancreatic ductal adenocarcinoma (PDAC) is often a lethal malignancy with limited preoperative predictors of long-term survival. The purpose of this study was to evaluate the prognostic utility of preoperative CT radiomics features in predicting postoperative survival of patients with PDAC. A total of 153 patients with surgically resected PDAC who underwent preoperative CT between 2011 and 2017 were retrospectively identified.

View Article and Find Full Text PDF

Artificial intelligence is poised to revolutionize medical image. It takes advantage of the high-dimensional quantitative features present in medical images that may not be fully appreciated by humans. Artificial intelligence has the potential to facilitate automatic organ segmentation, disease detection and characterization, and prediction of disease recurrence.

View Article and Find Full Text PDF

Next-generation tissue-based biomarkers for immunotherapy will likely include the simultaneous analysis of multiple cell types and their spatial interactions, as well as distinct expression patterns of immunoregulatory molecules. Here, we introduce a comprehensive platform for multispectral imaging and mapping of multiple parameters in tumor tissue sections with high-fidelity single-cell resolution. Image analysis and data handling components were drawn from the field of astronomy.

View Article and Find Full Text PDF

Computed tomography is the most commonly used imaging modality to detect and stage pancreatic cancer. Previous advances in pancreatic cancer imaging have focused on optimizing image acquisition parameters and reporting standards. However, current state-of-the-art imaging approaches still misdiagnose some potentially curable pancreatic cancers and do not provide prognostic information or inform optimal management strategies beyond stage.

View Article and Find Full Text PDF

Purpose: The purpose of this study is to evaluate diagnostic performance of a commercially available radiomics research prototype vs. an in-house radiomics software in the binary classification of CT images from patients with pancreatic ductal adenocarcinoma (PDAC) vs. healthy controls.

View Article and Find Full Text PDF

Purpose: Dosimetric assessment following permanent prostate brachytherapy (PPB) commonly involves seed localization using CT and prostate delineation using coregistered MRI. However, pelvic CT leads to additional imaging dose and requires significant resources to acquire and process both CT and MRI. In this study, we propose an automatic postimplant dosimetry approach that retains MRI for soft-tissue contouring, but eliminates the need for CT and reduces imaging dose while overcoming the inconsistent appearance of seeds on MRI with three projection x rays acquired using a mobile C-arm.

View Article and Find Full Text PDF

Accurate and robust segmentation of abdominal organs on CT is essential for many clinical applications such as computer-aided diagnosis and computer-aided surgery. But this task is challenging due to the weak boundaries of organs, the complexity of the background, and the variable sizes of different organs. To address these challenges, we introduce a novel framework for multi-organ segmentation of abdominal regions by using organ-attention networks with reverse connections (OAN-RCs) which are applied to 2D views, of the 3D CT volume, and output estimates which are combined by statistical fusion exploiting structural similarity.

View Article and Find Full Text PDF

The objective of our study was to determine the utility of radiomics features in differentiating CT cases of pancreatic ductal adenocarcinoma (PDAC) from normal pancreas. In this retrospective case-control study, 190 patients with PDAC (97 men, 93 women; mean age ± SD, 66 ± 9 years) from 2012 to 2017 and 190 healthy potential renal donors (96 men, 94 women; mean age ± SD, 52 ± 8 years) without known pancreatic disease from 2005 to 2009 were identified from radiology and pathology databases. The 3D volume of the pancreas was manually segmented from the preoperative CT scans by four trained researchers and verified by three abdominal radiologists.

View Article and Find Full Text PDF

Respiration-induced tumor motion is a major obstacle for achieving high-precision radiotherapy of cancers in the thoracic and abdominal regions. Surrogate-based estimation and tracking methods are commonly used in radiotherapy, but with limited understanding of quantified correlation to tumor motion. In this study, we propose a method to simultaneously track the lung tumor and external surrogates to evaluate their spatial correlation in a quantitative way using dynamic MRI, which allows real-time acquisition without ionizing radiation exposure.

View Article and Find Full Text PDF

Purpose To test whether computer-aided diagnosis (CAD) approaches can increase the positive predictive value (PPV) and reduce the false-positive rate in lung cancer screening for small nodules compared with human reading by thoracic radiologists. Materials and Methods A matched case-control sample of low-dose computed tomography (CT) studies in 186 participants with 4-20-mm noncalcified lung nodules who underwent biopsy in the National Lung Screening Trial (NLST) was selected. Variables used for matching were age, sex, smoking status, chronic obstructive pulmonary disease status, body mass index, study year of the positive screening test, and screening results.

View Article and Find Full Text PDF

Surrogate-based tumor motion estimation and tracing methods are commonly used in radiotherapy despite the lack of continuous real time 3D tumor and surrogate data. In this study, we propose a method to simultaneously track the tumor and external surrogates with dynamic MRI, which allows us to evaluate their reproducible correlation. Four MRI-compatible fiducials are placed on the patient's chest and upper abdomen, and multi-slice 2D cine MRIs are acquired to capture the lung and whole tumor, followed by two-slice 2D cine MRIs to simultaneously track the tumor and fiducials, all in sagittal orientation.

View Article and Find Full Text PDF

Cone-beam CT (CBCT) is a widely used intra-operative imaging modality in image-guided radiotherapy and surgery. A short scan followed by a filtered-backprojection is typically used for CBCT reconstruction. While data on the mid-plane (plane of source-detector rotation) is complete, off-mid-planes undergo different information deficiency and the computed reconstructions are approximate.

View Article and Find Full Text PDF

Purpose: Accurate tracking of anatomical changes and computation of actually delivered dose to the patient are critical for successful adaptive radiation therapy (ART). Additionally, efficient data management and fast processing are practically important for the adoption in clinic as ART involves a large amount of image and treatment data. The purpose of this study was to develop an accurate and efficient Software platform for CUmulative Dose Assessment (scuda) that can be seamlessly integrated into the clinical workflow.

View Article and Find Full Text PDF

Post-implant dosimetric assessment in prostate brachytherapy is typically performed using CT as the standard imaging modality. However, poor soft tissue contrast in CT causes significant variability in target contouring, resulting in incorrect dose calculations for organs of interest. CT-MR fusion-based approach has been advocated taking advantage of the complementary capabilities of CT (seed identification) and MRI (soft tissue visibility), and has proved to provide more accurate dosimetry calculations.

View Article and Find Full Text PDF

Purpose: This paper introduces a novel approach to classify pulmonary arteries and veins from volumetric chest computed tomography (CT) images. Although there is known to be a relationship between the alteration of vessel distributions and the progress of various pulmonary diseases, there has been relatively little research on the quantification of pulmonary vessels in vivo due to morphological difficulties. In particular, there have been few efforts to quantify the morphology and distribution of only arteries or veins through automated algorithms despite the clinical importance of such work.

View Article and Find Full Text PDF
Article Synopsis
  • - The discovery of X-rays in 1895 quickly advanced medical imaging, leading to key technologies like ultrasound (1950), CT scans (1972), and MRI (1980).
  • - Recent innovations include digital imaging systems, computer-aided detection, and organ-specific workstations, enhancing diagnostic capabilities.
  • - Newer breakthroughs in radiology involve imaging genomics and robotic interventions, offering improved methods for biopsies and treatment personalization.
View Article and Find Full Text PDF