Traditionally, high energy physics (HEP) experiments have relied on x86 CPUs for the majority of their significant computing needs. As the field looks ahead to the next generation of experiments such as DUNE and the High-Luminosity LHC, the computing demands are expected to increase dramatically. To cope with this increase, it will be necessary to take advantage of all available computing resources, including GPUs from different vendors.
View Article and Find Full Text PDFProc IEEE Int Conf Clust Comput
September 2022
The ability to track simulated cancer cells through the circulatory system, important for developing a mechanistic understanding of metastatic spread, pushes the limits of today's supercomputers by requiring the simulation of large fluid volumes at cellular-scale resolution. To overcome this challenge, we introduce a new adaptive physics refinement (APR) method that captures cellular-scale interaction across large domains and leverages a hybrid CPU-GPU approach to maximize performance. Through algorithmic advances that integrate multi-physics and multi-resolution models, we establish a finely resolved window with explicitly modeled cells coupled to a coarsely resolved bulk fluid domain.
View Article and Find Full Text PDFThe oxidation and reduction (redox) processes of redox-sensitive elements (RSE) in the presence of humic substances (HS) have become a significantly important issue in the terms of biogeochemical cycles. Redox processes are crucial for determining the speciation, mobility, toxicity, and bioavailability of RSE in natural environments. It is known that HS act as an effective redox mediator for accepting and donating electrons, and thereby transfers them to RSE.
View Article and Find Full Text PDFEnviron Geochem Health
February 2019
Mercuric species, Hg(II), interacts strongly with dissolved organic matter (DOM) through the oxidation, reduction, and complexation that affect the fate, bioavailability, and cycling of mercury, Hg, in aquatic environments. Despite its importance, the reactions between Hg(II) and DOM have rarely been studied in the presence of different concentrations of chloride ions (Cl) under anoxic conditions. Here, we report that the extent of Hg(II) reduction in the presence of the reduced DOM decreases with increasing Cl concentrations.
View Article and Find Full Text PDFColloid mobilization is a significant process governing colloid-associated transport of heavy metals in subsurface environments. It has been studied for the last three decades to understand this process. However, colloid mobilization and heavy metal transport in soil solutions have rarely been studied using soils in South Korea.
View Article and Find Full Text PDFReduction-oxidation (Redox) processes of mercury (Hg) are of significant importance in influencing Hg speciation, bioavailability, and fate in anoxic environments where natural organic matter (NOM) and dissimilatory metal reducing bacteria (DMRB) are widely observed. However, the redox reaction between Hg and NOM, has not yet been studied in the presence of S. oneidensis MR-1 in anoxic environments.
View Article and Find Full Text PDFFrequent activation of the Wnt/β-catenin signaling pathway has recently been demonstrated in gastric adenocarcinoma/neoplasia of chief cell predominant type (GA-CCP/GN-CCP) with submucosal involvement. In this study, we examined the activation status of the Wnt/β-catenin signaling pathway in GN-CCP without submucosal involvement, which is referred to as gastric dysplasia-CCP (GD-CCP). We also examined β-catenin expression and the mutation spectrum of PPP2R1A and Wnt pathway genes in 11 cases of GD-CCP, 25 cases of gastric polyps of fundic gland type (GPs-FG), and 21 cases of GPs-FG with dysplasia (GP-FGD).
View Article and Find Full Text PDFWe provide the mercury (Hg) and monomethylmercury (MMHg) levels of the plume water, sulfide ore, sediment, and mollusks located at the hydrothermal vent fields of the southern Tonga Arc, where active volcanism and intense seismic activity occur frequently. Our objectives were: (1) to address the potential release of Hg from hydrothermal fluids and (2) to examine the distribution of Hg and MMHg levels in hydrothermal mollusks (mussels and snails) harboring chemotrophic bacteria. While high concentrations of Hg in the sediment and Hg, As, and Sb in the sulfide ore indicates that their source is likely hydrothermal fluids, the MMHg concentration in the sediment was orders of magnitude lower than the Hg (<0.
View Article and Find Full Text PDFGastric adenocarcinoma of the fundic gland type (GAFG) is a rare variant of gastric tumor. We have recently reported the frequent accumulation of β-catenin in GAFGs and showed that approximately half of the cases studied harbored at least 1 mutation in CTNNB1/AXINs/APC, leading to the constitutive activation of the Wnt/β-catenin pathway. However, the mechanisms of Wnt signaling activation in the remaining cases are unknown.
View Article and Find Full Text PDFGastric neoplasia of chief cell-predominant type (GN-CCP) has been reported as a new, rare variant of gastric tumor. GN-CCPs were defined as tumors consisting of irregular anastomosing glands of columnar cells mimicking chief cells of fundic gland with nuclear atypia and prolapse-type submucosal involvement. We comparatively evaluated clinicopathologic features between 31 GN-CCPs and 130 cases of conventional gastric adenocarcinoma invading into submucosa (CGA-SM) in addition to nuclear β-catenin immunolabeling and direct sequencing of members of the Wnt/β-catenin pathway, CTNNB1, APC, and AXIN, in a subset of these tumors.
View Article and Find Full Text PDFBackground: Multiple carcinoid tumors of the small intestine are rare and are very difficult to detect preoperatively.
Case Report: A 75-year-old woman in whom the bleeding focus could not be found by upper and lower endoscopy and abdominal CT was admitted for evaluation of anemia. We examined the patient with total double-balloon endoscopy (DBE) and located multiple submucosal tumors.
Mercury (Hg) in estuarine water is distributed among different physical phases (i.e. particulate, colloidal, and truly dissolved).
View Article and Find Full Text PDF