Background: Intra-arterial administration of chemotherapy with or without osmotic blood-brain barrier disruption enhances delivery of therapeutic agents to brain tumors. The aim of this study is to evaluate the safety of these procedures.
Methods: Retrospectively collected data from a prospective database of consecutive patients with primary and metastatic brain tumors who received intra-arterial chemotherapy without osmotic blood-brain barrier disruption (IA) or intra-arterial chemotherapy with osmotic blood-brain barrier disruption (IA/OBBBD) at Oregon Health and Science University (OHSU) between December 1997 and November 2018 is reported.
Background: Significant morbidity and mortality is associated with surgical evacuation of acute subdural hematomas (ASDHs) in the elderly population. The literature remains mixed on risk factors associated with poor outcomes, specifically preoperative antithrombotic usage and postoperative seizures.
Methods: Between January 1, 2013, and December 31, 2017, we retrospectively identified 62 patients ≥65 years of age who underwent a craniotomy for evacuation of an ASDH, with the primary outcome being Glasgow Outcome Scale (GOS) score at discharge and 3- and 6-month follow-up.
Background: Cerebral blood volume (CBV) mapping with a dynamic susceptibility contrast (DSC) perfusion technique has become a clinical tool in diagnosing and follow-up of brain tumors. Ferumoxytol, a long-circulating iron oxide nanoparticle, has been tested for CBV mapping, but the optimal dose has not been established.
Purpose: To compare ferumoxytol DSC of two different doses to standard of care gadoteridol by analyzing time-intensity curves and CBV maps in normal-appearing brain regions.
Physiological and pathological processes that increase or decrease the central nervous system's need for nutrients and oxygen via changes in local blood supply act primarily at the level of the neurovascular unit (NVU). The NVU consists of endothelial cells, associated blood-brain barrier tight junctions, basal lamina, pericytes, and parenchymal cells, including astrocytes, neurons, and interneurons. Knowledge of the NVU is essential for interpretation of central nervous system physiology and pathology as revealed by conventional and advanced imaging techniques.
View Article and Find Full Text PDFDynamic susceptibility contrast-magnetic resonance imaging (DSC-MRI) is widely used to obtain informative perfusion imaging biomarkers, such as the relative cerebral blood volume (rCBV). The related post-processing software packages for DSC-MRI are available from major MRI instrument manufacturers and third-party vendors. One unique aspect of DSC-MRI with low-molecular-weight gadolinium (Gd)-based contrast reagent (CR) is that CR molecules leak into the interstitium space and therefore confound the DSC signal detected.
View Article and Find Full Text PDFContrast-enhanced magnetic resonance imaging is a commonly used diagnostic tool. Compared with standard gadolinium-based contrast agents, ferumoxytol (Feraheme, AMAG Pharmaceuticals, Waltham, MA), used as an alternative contrast medium, is feasible in patients with impaired renal function. Other attractive imaging features of i.
View Article and Find Full Text PDFTrauma Surg Acute Care Open
September 2016
Malignant dural neoplasms are not reliably distinguished from benign dural neoplasms with contrast-enhanced magnetic resonance imaging (MRI). MRI enhancement in central nervous system (CNS) diseases imaged with ferumoxytol has been attributed to intracellular uptake in macrophages rather than vascular leakage. We compared imaging to histopathology and immunohistochemistry in meningiomas and dural metastases having ferumoxytol-enhanced MRI (FeMRI) and gadolinium-enhanced MRI (GdMRI) in order to correlate enhancement patterns to macrophage presence and vascular state.
View Article and Find Full Text PDFAims: This retrospective study determined the survival of glioblastoma patients with or without pseudoprogression.
Methods: A total of 68 patients were included. Overall survival was compared between patients showing pseudoprogression (in most cases diagnosed using perfusion MRI with ferumoxytol) and in patients without pseudoprogession.
Aims: Prophylaxis against Pneumocystis jiroveci pneumonia (PJP) is currently recommended for patients receiving chemoradiation with temozolomide for newly diagnosed glioblastoma multiforme. At our institution, PJP prophylaxis during temozolomide treatment has not been routinely given because of the paucity of supporting data. We investigated the rate of PJP infections in our patients.
View Article and Find Full Text PDFBackground: Diagnosis of pseudoprogression in patients with glioblastoma multiforme (GBM) is limited by Response Assessment in Neuro-Oncology (RANO) criteria to 3 months after chemoradiotherapy (CRT). Frequency of pseudoprogression occurring beyond this time limit was determined. Survival comparison was made between pseudoprogression and true progression patients as determined by using perfusion magnetic resonance imaging with ferumoxytol (p-MRI-Fe).
View Article and Find Full Text PDFObjective: The study goal was to assess the benefits and potential limitations in the use of ultrasmall superparamagnetic iron oxide (USPIO) nanoparticles in the MRI diagnosis of CNS inflammatory diseases and primary CNS lymphoma.
Methods: Twenty patients with presumptive or known CNS lesions underwent MRI study. Eighteen patients received both gadolinium-based contrast agents (GBCAs) and 1 of 2 USPIO contrast agents (ferumoxytol and ferumoxtran-10) 24 hours apart, which allowed direct comparative analysis.
Cerebral blood volume (CBV) measurement complements conventional magnetic resonance imaging (MRI) to indicate pathologies in the central nervous system (CNS). Dynamic susceptibility contrast (DSC) perfusion imaging is limited by low resolution and distortion. Steady-state (SS) imaging may provide higher resolution CBV maps but was not previously possible in patients.
View Article and Find Full Text PDFPurpose: To compare gadoteridol and ferumoxytol for measurement of relative cerebral blood volume (rCBV) in patients with glioblastoma multiforme (GBM) who showed progressive disease at conventional magnetic resonance (MR) imaging after chemo- and radiation therapy (hereafter, chemoradiotherapy) and to correlate rCBV with survival.
Materials And Methods: Informed consent was obtained from all participants before enrollment in one of four institutional review board-approved protocols. Contrast agent leakage maps and rCBV were derived from perfusion MR imaging with gadoteridol and ferumoxytol in 19 patients with apparently progressive GBM on conventional MR images after chemoradiotherapy.
Brain metastases commonly occur in patients with breast, lung and melanoma systemic cancers. The anti-α(V) integrin monoclonal antibody intetumumab binds cell surface proteins important for adhesion, invasion and angiogenesis in the metastatic cascade. The objective of this study was to investigate the anti-metastatic effect of intetumumab in a hematogenous breast cancer brain metastasis model.
View Article and Find Full Text PDFFerumoxytol, an iron nanoparticle used as an intravascular contrast agent for perfusion magnetic resonance imaging (MRI), has never been explored in the pediatric population. The purpose of this prospective study is to characterize the vascular and permeability properties of pediatric brain tumors using two contrast agents during a single imaging session: ferumoxytol for dynamic susceptibility weighted contrast (DSC) MRI and gadoteridol for dynamic contrast-enhanced (DCE) MRI. In a single imaging session, patients received intravenous ferumoxytol for DSC MRI followed by gadoteridol for DCE MRI.
View Article and Find Full Text PDFObjective: Macrophages play a critical role in cerebral aneurysm formation and rupture. The purpose of this study is to demonstrate the feasibility and optimal parameters of imaging macrophages within human cerebral aneurysm wall using ferumoxytol-enhanced MRI.
Methods And Results: Nineteen unruptured aneurysms in 11 patients were imaged using T2*-GE-MRI sequence.
Objective: Ferumoxytol, an ultrasmall superparamagnetic iron oxide particle, has been suggested as a potential alternative MRI contrast agent in patients with renal failure. We compared ferumoxytol to gadoteridol enhancement on T1- and T2-weighted MRI in CNS disorders to explore its diagnostic utility.
Subjects And Methods: Data were collected from three protocols in 70 adults who underwent alternate-day gadoteridol- and ferumoxytol-enhanced MRI using identical parameters.
Purpose: To evaluate the consistency of tumor blood volume measurements and antiangiogenic therapy efficacy assessments with a low-molecular-weight gadolinium-based contrast agent (GBCA, gadodiamide) versus an iron oxide nanoparticle (ferumoxytol) in the presence or absence of a loading dose of contrast agent before perfusion magnetic resonance (MR) imaging (preload method).
Materials And Methods: The protocol was approved by the institutional animal care and use committee. U87MG tumor cells were implanted intracerebrally in 13 rats.
We used dynamic MRI to evaluate the effects of monoclonal antibodies targeting brain tumor vasculature. Female athymic rats with intracerebral human tumor xenografts were untreated or treated with intetumumab, targeting α(V)-integrins, or bevacizumab, targeting vascular endothelial growth factor (n = 4-6 per group). Prior to treatment and at 1, 3, and 7 days after treatment, we performed standard MRI to assess tumor volume, dynamic susceptibility-contrast MRI with the blood-pool iron oxide nanoparticle ferumoxytol to evaluate relative cerebral blood volume (rCBV), and dynamic contrast-enhanced MRI to assess tumor vascular permeability.
View Article and Find Full Text PDFThe accurate mapping of the tumor blood volume (TBV) fraction (vb) is a highly desired imaging biometric goal. It is commonly thought that achieving this is difficult, if not impossible, when small molecule contrast reagents (CRs) are used for the T1-weighted (Dynamic-Contrast-Enhanced) DCE-MRI technique. This is because angiogenic malignant tumor vessels allow facile CR extravasation.
View Article and Find Full Text PDFPurpose: We evaluated dynamic susceptibility-weighted contrast-enhanced magnetic resonance imaging (DSC-MRI) using gadoteridol in comparison to the iron oxide nanoparticle blood pool agent, ferumoxytol, in patients with glioblastoma multiforme (GBM) who received standard radiochemotherapy (RCT).
Methods And Materials: Fourteen patients with GBM received standard RCT and underwent 19 MRI sessions that included DSC-MRI acquisitions with gadoteridol on Day 1 and ferumoxytol on Day 2. Relative cerebral blood volume (rCBV) values were calculated from DSC data obtained from each contrast agent.
Objective: Refractory anaplastic oligodendroglioma and oligoastrocytoma tumors are challenging to treat. This trial primarily evaluated toxicity and estimated the maximum tolerated dose of intra-arterial (IA) melphalan, IA carboplatin, and intravenous (IV) etoposide phosphate in conjunction with blood-brain barrier disruption in these tumors. The secondary measure was efficacy.
View Article and Find Full Text PDFSuperparamagnetic iron oxide nanoparticles have diverse diagnostic and potential therapeutic applications in the central nervous system (CNS). They are useful as magnetic resonance imaging (MRI) contrast agents to evaluate: areas of blood-brain barrier (BBB) dysfunction related to tumors and other neuroinflammatory pathologies, the cerebrovasculature using perfusion-weighted MRI sequences, and in vivo cellular tracking in CNS disease or injury. Novel, targeted, nanoparticle synthesis strategies will allow for a rapidly expanding range of applications in patients with brain tumors, cerebral ischemia or stroke, carotid atherosclerosis, multiple sclerosis, traumatic brain injury, and epilepsy.
View Article and Find Full Text PDFThe vascular effects of antiangiogenic treatment may pose problems for evaluating brain tumor response based on contrast-enhanced magnetic resonance imaging (MRI). We used serial dynamic contrast-enhanced MRI at 12 T to assess vascular responses to antiangiogenic versus steroid therapy. Athymic rats with intracerebral U87MG human glioma (n=17) underwent susceptibility-weighted perfusion MRI with ferumoxytol, a solely intravascular ultrasmall superparamagnetic iron oxide (USPIO) nanoparticle, followed by T1-weighted dynamic gadodiamide-enhanced MRI to measure vascular permeability.
View Article and Find Full Text PDF