Background: Cytochrome P450 1B1 (CYP1B1) is active in the metabolism of estrogens to reactive catechols and of different procarcinogens. Several studies have investigated the relationship between genetic polymorphisms of CYP1B1 and breast cancer risk with inconsistent results. A G --> C transversion polymorphism in the heme-binding region in codon 432 of the gene results in amino acid change (Val --> Leu); the Leu allele display increased catalytic efficiency for 4-hydroxylation of estradiol in some experimental systems.
View Article and Find Full Text PDFBackground: Leptin, a 16 kDa polypeptide hormone, implicated in various physiological processes, exerts its action through the leptin receptor, a member of the class I cytokine receptor family. Both leptin and leptin receptor have recently been implicated in processes leading to breast cancer initiation and progression in animal models and humans. An A to G transition mutation in codon 223 in exon 6 of the leptin receptor gene, resulting in glutamine to arginine substitution (Gln223Arg), lies within the first of two putative leptin-binding regions and may be associated with impaired signaling capacity of the leptin receptor.
View Article and Find Full Text PDFTo test the hypothesis of interaction among genetic variants in increasing the individual risk of cancer, we have studied the cumulative effect on lung cancer risk of variants in three metabolic genes, CYP1A1, GSTM1 and GSTT1, which are involved in the metabolism of the tobacco smoke constituents and environmental contaminants, polycyclic aromatic hydrocarbons and of other lung carcinogens. We have selected from the Genetic Susceptibility to Environmental Carcinogens pooled analysis all the studies on lung cancer conducted after 1991 in which all variants were available. The data set includes 611 cases and 870 controls.
View Article and Find Full Text PDF