Background: Predicting the evolution of the brain network, also called connectome, by foreseeing changes in the connectivity weights linking pairs of anatomical regions makes it possible to spot connectivity-related neurological disorders in earlier stages and detect the development of potential connectomic anomalies. Remarkably, such a challenging prediction problem remains least explored in the predictive connectomics literature. It is a known fact that machine learning (ML) methods have proven their predictive abilities in a wide variety of computer vision problems.
View Article and Find Full Text PDFIEEE Trans Neural Netw Learn Syst
June 2022
Anomalies are ubiquitous in all scientific fields and can express an unexpected event due to incomplete knowledge about the data distribution or an unknown process that suddenly comes into play and distorts the observations. Usually, due to such events' rarity, to train deep learning (DL) models on the anomaly detection (AD) task, scientists only rely on "normal" data, i.e.
View Article and Find Full Text PDF