Fluorescent chemosensors offer a direct means of measuring enzyme activity for cancer diagnosis, predicting drug resistance, and aiding in the discovery of new anticancer drugs. O-methylguanine DNA methyltransferase (MGMT) is a predictor of resistance towards anticancer alkylating agents such as temozolomide. Using the fluorescent molecular rotor, 9-(2-carboxy-2-cyanovinyl)julolidine (CCVJ), we synthesized, and evaluated a MGMT fluorescent chemosensor derived from a chloromethyl-triazole covalent inhibitor, AA-CW236, a non-pseudosubstrate of MGMT.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) is a clinically approved cancer treatment that requires a photosensitizer (PS), light, and molecular oxygen─a combination which produces reactive oxygen species (ROS) that can induce cancer cell death. To enhance the efficacy of PDT, dual-targeted strategies have been explored where two photosensitizers are administered and localize to different subcellular organelles. To date, a single small-molecule conjugate for dual-targeted PDT with light-controlled nuclear localization has not been achieved.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) has been used as an anti-tumor treatment method for a long time and photosensitizers (PS) can be used in various types of tumors. Originally, light is an effective tool that has been used in the treatment of diseases for ages. The effects of combination of specific dyes with light illumination was demonstrated at the beginning of 20th century and novel PDT approaches have been developed ever since.
View Article and Find Full Text PDFPhotodynamic therapy (PDT) mostly relies on the generation of singlet oxygen, via the excitation of a photosensitizer, so that target tumor cells can be destroyed. PDT can be applied in the settings of several malignant diseases. In fact, the earliest preclinical applications date back to 1900's.
View Article and Find Full Text PDFWe propose to overcome oxygen deficiency and light attenuation problems in photodynamic therapy (PDT), by separating photoexcitation and singlet oxygen delivery of the PDT process into two distinct operations to be carried out sequentially, at different locations. We now demonstrate the viability of this approach, using 2-pyridone derivative which yields a relatively stable endoperoxide. The initial storage endoperoxide obtained is transformed enzymatically into a more labile compound when placed in hypoxic cell cultures, and releases singlet oxygen significantly faster.
View Article and Find Full Text PDFMolecular logic gates are expected to play an important role on the way to information processing therapeutic agents, especially considering the wide variety of physical and chemical responses that they can elicit in response to the inputs applied. Here, we show that a 1:2 demultiplexer based on a Zn-terpyridine-Bodipy conjugate with a quenched fluorescent emission, is efficient in photosensitized singlet oxygen generation as inferred from trap compound experiments and cell culture data. However, once the singlet oxygen generated by photosensitization triggers apoptotic response, the Zn complex then interacts with the exposed phosphatidylserine lipids in the external leaflet of the membrane bilayer, autonomously switching off singlet oxygen generation, and simultaneously switching on a bright emission response.
View Article and Find Full Text PDFBringing together the concepts of self-immolative linkers and chemiluminogen dioxetane modules, a chemiluminescence-based sensor for fluoride with signal amplification is presented. Signal amplification is obtained by triggering two chemiluminescence events for each reacting fluoride ion that in turn releases two fluoride ions for each ion. As expected, the chemiluminescence signal starts to rise following an induction period.
View Article and Find Full Text PDF