Phenyl-C-butyric acid methyl ester (PCBM) can be used as a passivation material in perovskite solar cells (PeSCs) in order to reduce the trap site of the perovskite. Here, we show that a thick PCBM layer can form a smoother surface on the SnO substrate, improving the grain size and reducing the microstrain of the perovskite. High-temperature annealing treatment of PCBM layer not only increases its solvent resistance to perovskite precursor or antisolvent, but also enhances its molecular alignment, resulting in improved conductivity as an electron transport layer.
View Article and Find Full Text PDFSince the South Korean government enacted the Emission Trading Scheme (ETS), companies have been striving to simultaneously improve productivity and reduce carbon emissions, which represent conflicting goals. We used firm-level emissions and corporate variables to investigate how ETS enactment has affected carbon productivity, which is a firm-level revenue created per unit of carbon emission. Results showed that firm-level carbon productivity increased significantly under the ETS, and such a trend was more evident for high-emission industries.
View Article and Find Full Text PDFThe ability to control the morphologies of active layers is a critical factor in the successful development of polymer solar cells (PSCs), and solvent processing additives offer a simple and effective way to accomplish this. In particular, diphenyl ether (DPE) is one of the most effective solvent additives but analogous additives based on this structure have not yet been extensively investigated. In this work, we have fabricated PSCs and investigated photovoltaic device characteristics using the series of non-halogenated, diphenyl-chalcogen solvent additives; DPE, diphenyl sulfide (DPS) and diphenyl selenide (DPSe).
View Article and Find Full Text PDFWe herein demonstrate n-i-p-type planar heterojunction perovskite solar cells employing spin-coated ZnO nanoparticles modified with various alkali metal carbonates including LiCO, NaCO, KCO and CsCO, which can tune the energy band structure of ZnO ETLs. Since these metal carbonates doped on ZnO ETLs lead to deeper conduction bands in the ZnO ETLs, electrons are easily transported from the perovskite active layer to the cathode electrode. The power conversion efficiency of about 27% is improved due to the incorporation of alkali carbonates in ETLs.
View Article and Find Full Text PDFNaphthalene diimide (NDI) dimers, NDI-Ph-NDI with a phenyl linker and NDI-Xy-NDI with a xylene linker, are designed and synthesized. The influence of the xylene and phenyl linkers on optical properties, electrochemical properties, morphology, and device performance is systematically investigated. Non-fullerene organic solar cells (OSCs) with NDI-Ph-NDI show poor device efficiency due to aggregation of polymer chains and/or NDI dimers caused by the highly planar structure of NDI-Ph-NDI.
View Article and Find Full Text PDFUnlabelled: Organic-inorganic hybrid perovskite materials offer the potential for realization of low-cost and flexible next-generation solar cells fabricated by low-temperature solution processing. Although efficiencies of perovskite solar cells have dramatically improved up to 19% within the past 5 years, there is still considerable room for further improvement in device efficiency and stability through development of novel materials and device architectures. Here we demonstrate that inverted-type perovskite solar cells with pH-neutral and low-temperature solution-processable conjugated polyelectrolyte as the hole transport layer (instead of acidic
Pedot: PSS) exhibit a device efficiency of over 12% and improved device stability in air.
Although polymer solar cells (PSCs) have received a tremendous amount of attention in recent years, a number of criteria must be met in order for them to be suitable as practical and commercially feasible power sources, including high performance, good air stability and inexpensive manufacturing. In this contribution, we determine the optimal top electrode for practical PSC fabrication by investigating the influence of the electrode material on the optical properties and performance of PSC devices. The optical properties of eight metals were considered, out of which three metal electrodes (aluminum (Al), silver (Ag), gold (Au)) with the best optical properties were used to prepare inverted PSC devices comprising a blended polymer thieno[3,4-b]thiophene/benzodithiophene (PTB7) and [6,6]-phenyl C71-butyric acid methyl ester (PC71BM).
View Article and Find Full Text PDFTo be meaningful to guide the rational design of novel high-performance conjugated semiconductors, we prepared three benzo[1,2-b:4,5-b']dithiophene (BDT)-based polymers by systematically moving the branching point of the alkyl chain. The effect of side-chain engineering was thoroughly investigated by a range of techniques. We demonstrate that a subtle change in the branching position in the BDT core can have a critical impact on polymer packing and preferential backbone orientation in thin films; copolymers made from BDT and thieno[3,4-c]pyrrole-4,6-dione units (TPD) adopt more of a face-on orientation as the branching point is shifted closer to the backbone, which can be correlated with a dramatic difference in solar-cells performance.
View Article and Find Full Text PDFWe investigate mixed solvents of N,N-dimethylformamide (DMF) and γ-butyrolactone (GBL) to produce the smooth surface of a perovskite film and uniform crystal domains. This ideal morphology from mixed solvents enhances the power conversion efficiency to over 6% by improving the exciton dissociation efficiency and reducing the recombination loss at both interfaces of PEDOT:PSS/perovskite and perovskite/PCBM.
View Article and Find Full Text PDF