Conventionally, cerebrovascular reactivity (CVR) is estimated as the amplitude of the hemodynamic response to vascular stimuli, most commonly carbon dioxide (CO). While the CVR amplitude has established clinical utility, the temporal characteristics of CVR (dCVR) have been increasingly explored and may yield even more pathology-sensitive parameters. This work is motivated by the current need to evaluate the feasibility of dCVR modeling in various experimental conditions.
View Article and Find Full Text PDFThe Coronavirus has spread across the world and infected millions of people, causing devastating damage to the public health and global economies. To mitigate the impact of the coronavirus a reliable, fast, and accurate diagnostic system should be promptly implemented. In this study, we propose EpistoNet, a decision tree-based ensemble model using two mixtures of discriminative experts to classify COVID-19 lung infection from chest X-ray images.
View Article and Find Full Text PDFThe desire to enhance the sensitivity and specificity of resting-state (rs-fMRI) measures has prompted substantial recent research into removing noise components. Chief among contributions to noise in rs-fMRI are physiological processes, and the neuronal implications of respiratory-volume variability (RVT), a main rs-fMRI-relevant physiological process, is incompletely understood. The potential implications of RVT in modulating and being modulated by autonomic nervous regulation, has yet to be fully understood by the rs-fMRI community.
View Article and Find Full Text PDFBackground: Atopic dermatitis (AD) is a common, chronic, relapsing and inflammatory skin disease characterized by pruritus and xerosis (dry skin). Its prevalence is on the increase worldwide, particularly in children. As the pathogenesis of AD involves a complex interaction of genetic, environmental and immunological factors, its definitive treatment is difficult.
View Article and Find Full Text PDFTo spatially cluster resting state-functional magnetic resonance imaging (rs-fMRI) data into potential networks, there are only a few general approaches that determine the number of networks/clusters, despite a wide variety of techniques proposed for clustering. For individual subjects, extraction of a large number of spatially disjoint clusters results in multiple small networks that are spatio-temporally homogeneous but irreproducible across subjects. Alternatively, extraction of a small number of clusters creates spatially large networks that are temporally heterogeneous but spatially reproducible across subjects.
View Article and Find Full Text PDFIEEE Trans Med Imaging
May 2015
Linear predictive models are applied to functional MRI (fMRI) data to estimate boundaries that predict experimental task states for scans. These boundaries are visualized as statistical parametric maps (SPMs) and range from low to high spatial reproducibility across subjects (e.g.
View Article and Find Full Text PDF