Unlabelled: There is a growing interest in utilizing 3D culture models for stem cell and cancer cell research due to their closer resemblance to in vivo environments. In this study, human mesenchymal stem cells (MSCs) were cultured using adipocytes and osteocytes as differentiative mediums on varying concentrations of chitosan substrate. Light microscopy was employed to capture cell images from the first day to the 21st day of differentiation.
View Article and Find Full Text PDFProtein ubiquitination is a critical post-translational modification (PTMs) involved in numerous cellular processes. Identifying ubiquitination sites (Ubi-sites) on proteins offers valuable insights into their function and regulatory mechanisms. Due to the cost- and time-consuming nature of traditional approaches for Ubi-site detection, there has been a growing interest in leveraging artificial intelligence for computer-aided Ubi-site prediction.
View Article and Find Full Text PDFGenomics Proteomics Bioinformatics
December 2023
Post-translational modifications (PTMs) have key roles in extending the functional diversity of proteins and, as a result, regulating diverse cellular processes in prokaryotic and eukaryotic organisms. Phosphorylation modification is a vital PTM that occurs in most proteins and plays a significant role in many biological processes. Disorders in the phosphorylation process lead to multiple diseases, including neurological disorders and cancers.
View Article and Find Full Text PDFPersistent developmental stuttering (PDS) is defined as a speech disorder mainly characterized by intermittent involuntary disruption in normal fluency, time patterning, and rhythm of speech. Although extensive functional neuroimaging studies have explored brain activation alterations in stuttering, the main affected brain regions/networks in PDS still remain unclear. Here, using functional magnetic resonance imaging (fMRI), we investigated resting-state whole-brain functional connectivity of 15 adults who stutter (PDS group) and 15 age-matched control individuals to reveal the connectivity abnormalities associated with stuttering.
View Article and Find Full Text PDFSci Rep
August 2021
Biomechanical and morphological analysis of the cells is a novel approach for monitoring the environmental features, drugs, and toxic compounds' effects on cells. Graphene oxide (GO) has a broad range of medical applications such as tissue engineering and drug delivery. However, the effects of GO nanosheets on biological systems have not been completely understood.
View Article and Find Full Text PDFLung cancer is a leading cause of cancer death in both men and women worldwide. The high mortality rate in lung cancer is in part due to late-stage diagnostics as well as spread of cancer-cells to organs and tissues by metastasis. Automated lung cancer detection and its sub-types classification from cell's images play a crucial role toward an early-stage cancer prognosis and more individualized therapy.
View Article and Find Full Text PDFThe β amyloid peptides (Aβ) are identified as a candidate target for Alzheimer's drugs. Phenolic compounds can bind to the Aβ and inhibit amyloid formation. However, the inhibitory mechanism of phenolic compounds remains unclear.
View Article and Find Full Text PDFLack of perfect insulin signaling can lead to the insulin resistance, which is the hallmark of diabetes mellitus. Activation of insulin and its binding to the receptor for signaling process initiates via B-chain C-terminal hinge conformational change through an open structure to "wide-open" conformation. Observational studies and basic scientific evidence suggest that vitamin D and E directly and/or indirectly prevent diabetes through improving glucose secretion and tolerance, activating calcium dependent endopeptidases and thus improving insulin exocytosis, antioxidant effect and reducing insulin resistance.
View Article and Find Full Text PDFPurpose: Robust and reliable reconstruction of images from noisy and incomplete projection data holds significant potential for proliferation of cost-effective medical imaging technologies. Since conventional reconstruction techniques can generate severe artifacts in the recovered images, a notable line of research constitutes development of appropriate algorithms to compensate for missing data and to reduce noise. In the present work, we investigate the effectiveness of state-of-the-art methodologies developed for image inpainting and noise reduction to preserve the quality of reconstructed images from undersampled PET data.
View Article and Find Full Text PDFRecognition of natural emotions from human faces is an interesting topic with a wide range of potential applications, such as human-computer interaction, automated tutoring systems, image and video retrieval, smart environments, and driver warning systems. Traditionally, facial emotion recognition systems have been evaluated on laboratory controlled data, which is not representative of the environment faced in real-world applications. To robustly recognize the facial emotions in real-world natural situations, this paper proposes an approach called extreme sparse learning, which has the ability to jointly learn a dictionary (set of basis) and a nonlinear classification model.
View Article and Find Full Text PDF