Background: Cyanobacteria, particularly Synechocystis sp. PCC 6803, serve as model organisms for studying acclimation strategies that enable adaptation to various environmental stresses. Understanding the molecular mechanisms underlying these adaptations provides insight into how cells adjust gene expression in response to challenging conditions.
View Article and Find Full Text PDFBacteria experience a continual array of environmental stresses, necessitating adaptive mechanisms crucial for their survival. Thermophilic bacteria, such as Thermus thermophilus, face constant environmental challenges, particularly high temperatures, which requires robust adaptive mechanisms for survival. Studying these extremophiles provides valuable insights into the intricate molecular and physiological processes used by extremophiles to adapt and survive in harsh environments.
View Article and Find Full Text PDFAb initio vdW calculations with the DFT level of theory were used to investigate hydrogen (H₂) adsorption on Pt-adsorbed graphene (Pt-graphene). We have explored the most energetically favorable sites for single Pt atom adsorption on the graphene surface. The interaction of H₂ with the energetically favorable Pt-graphene system was then investigated.
View Article and Find Full Text PDF