Publications by authors named "Seyedamin Firouzeh"

Transfer of chirality, or transmission of asymmetric information from one system to another, plays an essential role in fundamental biological and chemical processes and, therefore, is essential for life. This phenomenon also holds immense potential in spintronics in the context of chirality-induced spin selectivity (CISS). In the CISS, the spatial arrangement of chiral molecules influences the spin state of electrons during the charge-transfer processes.

View Article and Find Full Text PDF

ConspectusMagnetism is an area of immense fundamental and technological importance. At the atomic level, magnetism originates from electron "spin". The field of nanospintronics (or nanoscale spin-based electronics) aims to control spins in nanoscale systems, which has resulted in astronomical improvement in data storage and magnetic field sensing technologies over the past few decades, recognized by the 2007 Nobel Prize in Physics.

View Article and Find Full Text PDF

Chiral graphene hybrid materials have attracted significant attention in recent years due to their various applications in the areas of chiral catalysis, chiral separation and recognition, enantioselective sensing, etc. On the other hand, chiral materials are also known to exhibit chirality-dependent spin transmission, commonly dubbed "chirality induced spin selectivity" or CISS. However, CISS properties of chiral graphene materials are largely unexplored.

View Article and Find Full Text PDF

Spin-orbit coupling in a chiral medium is generally assumed to be a necessary ingredient for the observation of the chirality-induced spin selectivity (CISS) effect. However, some recent studies have suggested that CISS may manifest even when the chiral medium has zero spin-orbit coupling. In such systems, CISS may arise due to an orbital polarization effect, which generates an electromagnetochiral anisotropy in two-terminal conductance.

View Article and Find Full Text PDF

Current-perpendicular-to-plane magnetoresistance (CPP MR) in layered heterojunctions is at the heart of modern magnetic field sensing and data storage technologies. van der waals heterostructures and two-dimensional (2D) magnets opened a new playground for exploring this effect, although most 2D magnets exhibit large CPP MR only at very low temperatures due to their very low Curie temperatures. vanadium diselenide (VSe) is a promising material since its monolayers can potentially act as room temperature ferromagnets.

View Article and Find Full Text PDF

Supramolecular short-peptide assemblies have been widely used for the development of biomaterials with potential biomedical applications. These peptides can self-assemble in a multitude of chiral hierarchical structures triggered by the application of different stimuli, such as changes in temperature, pH, solvent, etc. The self-assembly process is sensitive to the chemical composition of the peptides, being affected by specific amino acid sequence, type, and chirality.

View Article and Find Full Text PDF

Molecular functionalization of CNTs is a routine procedure in the field of nanotechnology. However, whether and how these molecules affect the spin polarization of the charge carriers in CNTs are largely unknown. In this work we demonstrate that spin polarization can indeed be induced in two-dimensional (2D) CNT networks by "certain" molecules and the spin signal routinely survives length scales significantly exceeding 1 μm.

View Article and Find Full Text PDF

Helical functionalization of carbon nanotubes using DNA strands can polarize carrier spins through chirality induced spin selectivity (or CISS) effect. Detection of this effect using transport experiments unravels an underlying magnetoresistance effect, origin of which is not well understood. In the present study, we investigate this effect, a fundamental understanding of which is crucial for the potential use of this system in spintronic devices.

View Article and Find Full Text PDF

Carbon nanotubes (CNTs), helically wrapped with single-stranded DNA, have recently emerged as a spin-filtering material. The inversion asymmetric helical potential of DNA creates a spin-filtering effect (commonly known as "chirality-induced spin selectivity" or CISS), which polarizes carrier spins in the nanotube. Thus, tuning of the DNA-CNT interaction is expected to affect carrier spins in nanotubes.

View Article and Find Full Text PDF