Publications by authors named "Seyed Zeinab Alavi"

Objective: This study aims to utilize PEGylated poly (lactic-co-glycolic acid) (PLGA) nanoparticles as a delivery system for simultaneous administration of the BRAF peptide, a tumor-specific antigen, and imiquimod (IMQ). The objective is to stimulate dendritic cell (DC) maturation, activate macrophages, and facilitate antigen presentation in C57BL6 mice.

Methods: PEG-PLGA-IMQ-BRAF nanoparticles were synthesized using a PLGA-PEG-PLGA tri-block copolymer, BRAF, and IMQ.

View Article and Find Full Text PDF

This review highlights the transformative impact of microfluidic technology on personalized drug delivery. Microfluidics addresses issues in traditional drug synthesis, providing precise control and scalability in nanoparticle fabrication, and microfluidic platforms show high potential for versatility, offering patient-specific dosing and real-time monitoring capabilities, all integrated into wearable technology. Covalent conjugation of antibodies to nanoparticles improves bioactivity, driving innovations in drug targeting.

View Article and Find Full Text PDF

Human skin is the largest organ and outermost surface of the human body, and due to the continuous exposure to various challenges, it is prone to develop injuries, customarily known as wounds. Although various tissue engineering strategies and bioactive wound matrices have been employed to speed up wound healing, scarring remains a significant challenge. The wound environment is harsh due to the presence of degradative enzymes and elevated pH levels, and the physiological processes involved in tissue regeneration operate on distinct time scales.

View Article and Find Full Text PDF

In this review, we highlight the potential of stimuli-responsive drug delivery systems (DDSs) to revolutionize healthcare. Through examining pH, temperature, enzyme, and redox responsiveness, the presented case studies highlight the precision and enhanced therapeutic outcomes achievable with these innovative systems. Challenges, such as complex design and bio-based material optimization, underscore the complete journey from bench to bedside.

View Article and Find Full Text PDF

Objective: Because of the anatomical complexity of the oral and maxillofacial sites, repairing bone defects in these regions is very difficult. This review article aims to consider the application of biocomposites-based strategies for dental bone regeneration.

Study Design: Research papers related to the topic, published over the last 20 years, were selected using the Web of Science, Pubmed, Scopus, and Google Scholar databases.

View Article and Find Full Text PDF