This research aims to use the power of geospatial artificial intelligence (GeoAI), employing the categorical boosting (CatBoost) machine learning model in conjunction with two metaheuristic algorithms, the firefly algorithm (CatBoost-FA) and the fruit fly optimization algorithm (CatBoost-FOA), to spatially assess and map noise pollution prone areas in Tehran city, Iran. To spatially model areas susceptible to noise pollution, we established a comprehensive spatial database encompassing data for the annual average Leq (equivalent continuous sound level) from 2019 to 2022. This database was enriched with critical spatial criteria influencing noise pollution, including urban land use, traffic volume, population density, and normalized difference vegetation index (NDVI).
View Article and Find Full Text PDFAddressing water scarcity challenges in arid regions is a pressing concern and demands innovative solutions for accurate groundwater potential mapping (GPM). This study presents a comprehensive evaluation of advanced modeling techniques to enhance the precision of GPM. This study, conducted in the Zayandeh Rood watershed, Iran, employed a spatial database comprising 16 influential factors on groundwater potential and data from 175 wells.
View Article and Find Full Text PDFDust pollution poses significant risks to human health, air quality, and food safety, necessitating the identification of dust occurrence and the development of dust susceptibility maps (DSMs) to mitigate its effects. This research aims to detect dust occurrence using satellite images and prepare a DSM for Bushehr province, Iran, by enhancing the attentive interpretable tabular learning (TabNet) model through three swarm-based metaheuristic algorithms: particle swarm optimization (PSO), grey wolf optimizer (GWO), and hunger games search (HGS). A spatial database incorporating dust occurrence areas was created using Moderate Resolution Imaging Spectroradiometer (MODIS) images from 2002 to 2022, including 15 influential criteria related to climate, soil, topography, and land cover.
View Article and Find Full Text PDFFlash floods are one of the worst natural disasters, causing massive economic losses and many deaths. Creating a flood susceptibility map (FSM) that pinpoints the areas most at risk of flooding is a crucial non-structural solution for managing floods. This study aimed to assess the efficacy of combinations of the random forest (RF) model with three biology-inspired metaheuristic algorithms, namely invasive weed optimization (IWO), slime mould algorithm (SMA), and satin bowerbird optimization (SBO), for flood susceptibility mapping in Estahban town, Iran.
View Article and Find Full Text PDFTo mitigate the impact of dust on human health and the environment, it is crucial to create a model and map that identifies the areas susceptible to dust. The present study focused on identifying dust occurrences in the Bushehr province of Iran between 2002 and 2022 using moderate-resolution imaging spectroradiometer (MODIS) imagery. Subsequently, an ensemble machine learning model was improved to prepare a dust susceptibility map (DSM).
View Article and Find Full Text PDFFloods are the natural disaster that occurs most frequently due to the weather and causes the most widespread destruction. The purpose of the proposed research is to analyze flood susceptibility mapping (FSM) in the Sulaymaniyah province of Iraq. This study employed a genetic algorithm (GA) to fine-tune parallel ensemble-based machine learning algorithms (random forest (RF) and bootstrap aggregation (Bagging)).
View Article and Find Full Text PDFIn recent months, the world has been affected by the infectious coronavirus disease and Iran is one of the most affected countries. The Iranian government's health facilities for an urgent investigation of all provinces do not exist simultaneously. There is no management tool to identify the vulnerabilities of Iranian provinces in prioritizing health services.
View Article and Find Full Text PDFInt J Environ Res Public Health
September 2021
The reduction of population concentration in some urban land uses is one way to prevent and reduce the spread of COVID-19 disease. Therefore, the objective of this study is to prepare the risk mapping of COVID-19 in Tehran, Iran, using machine learning algorithms according to socio-economic criteria of land use. Initially, a spatial database was created using 2282 locations of patients with COVID-19 from 2 February 2020 to 21 March 2020 and eight socio-economic land uses affecting the disease-public transport stations, supermarkets, banks, automated teller machines (ATMs), bakeries, pharmacies, fuel stations, and hospitals.
View Article and Find Full Text PDFUrban air pollution is one of the most critical issues that affect the environment, community health, economy, and management of urban areas. From a public health perspective, PM is one of the primary air pollutants, especially in Tehran's metropolis. Owing to the different patterns of PM in different seasons, Spatio-temporal modeling and identification of high-risk areas to reduce its effects seems necessary.
View Article and Find Full Text PDFIndustrialization and increasing urbanization have led to increased air pollution, which has a devastating effect on public health and asthma. This study aimed to model the spatial-temporal of asthma in Tehran, Iran using a machine learning model. Initially, a spatial database was created consisting of 872 locations of asthma children and six air pollution parameters, including carbon monoxide (CO), particulate matter (PM and PM), nitrogen dioxide (NO), sulfur dioxide (SO), and ozone (O) in four-seasons (spring, summer, autumn, and winter).
View Article and Find Full Text PDFNowadays, owing to population growth, increasing environmental pollution, and lifestyle changes, the number of asthmatics has significantly increased. Therefore, the purpose of our study was to determine the asthma-prone areas in Tehran, Iran considering environmental, spatial factors. Initially, we built a spatial database using 872 locations of children with asthma and 13 environmental factors affecting the disease-distance to parks and streets, rainfall, temperature, humidity, pressure, wind speed, particulate matter (PM 10 and PM 2.
View Article and Find Full Text PDFIn the terrestrial ecosystems, perennial challenges of increased frequency and intensity of wildfires are exacerbated by climate change and unplanned human activities. Development of robust management and suppression plans requires accurate estimates of future burn probabilities. This study describes the development and validation of two hybrid intelligence predictive models that rely on an adaptive neuro-fuzzy inference system (ANFIS) and two metaheuristic optimization algorithms, i.
View Article and Find Full Text PDFFlood is one of the most destructive natural disasters which cause great financial and life losses per year. Therefore, producing susceptibility maps for flood management are necessary in order to reduce its harmful effects. The aim of the present study is to map flood hazard over the Jahrom Township in Fars Province using a combination of adaptive neuro-fuzzy inference systems (ANFIS) with different metaheuristics algorithms such as ant colony optimization (ACO), genetic algorithm (GA), and particle swarm optimization (PSO) and comparing their accuracy.
View Article and Find Full Text PDF