Oil-polluted water mixtures are difficult to separate, and thus, they are considered as a global challenge. A superior superhydrophilic and low-adhesive underwater superoleophobic styrene-acrylate copolymer filtration membrane is constructed using a salt (NaOH)-induced phase-inversion approach. The as-fabricated filtration membrane provides a hierarchical-structured surface morphology and three-dimensional high density open-rough porous geometry with a special chemical composition including highly accessible hydrophilic -COO agents, which all are of great importance for long-term usage of immiscible/emulsified (light) oil-polluted wastewater separation.
View Article and Find Full Text PDFIn this study, functionalized hydrogel bioadsorbents were produced from gum tragacanth (GT) carbohydrate and quaternary ammonium salt (TMSQA) as a crosslinker. The prepared bioadsorbents were used for the removal of NO ions from water through the electrostatic and ion exchange mechanism and antibacterial activity. The effect of quaternary ammonium content on the adsorption capacity was studied.
View Article and Find Full Text PDFSuperwetting antiwater and antioil textiles are not only very attractive for efficient and cost-effective oil-water separation but also very challenging to be prepared. A well-designed polystyrene wool-like fibrous mesh was fabricated by a controlled electrospinning setup to provide simple and quick reversible ethanol-triggered switching between antiwater and antioil superwetting states in various media such as air, water, and oil. Additionally, it exhibits a long-term stability against acid, alkaline, and salt at high concentrations.
View Article and Find Full Text PDFThis study represents the first attempt to chemically modify wheat straw (WS) using 3-chloropropyltrimethoxysilane (CPTMS) and (1,4-diazabicyclo[2.2.2]octane) (DABCO).
View Article and Find Full Text PDFA straightforward approach was successfully developed to fabricate a well-designed three-dimensional rough sheetlike MgAl-layered double hydroxide (LDH) array to stand vertically on poly(acrylonitrile) porous nanofibrous membranes based on an electrospun-nanofiber-templated in situ hydrothermal strategy, and then the surface was modified with cyclohexanecarboxylic acid. The as-spun highly dense ordered sheetlike LDH porous nanofabric exhibited a superior durability in superhydrophobicity and superoleophilicity, which has achieved high oil-removing capability including both oil harvesting and oil separation to harvest/separate a wide range of organic solvents and oils from an oil-water mixture and, especially, exhibited a very good recycling and reusing performance. Interestingly, a steady water repellency was obtained against both drinkable hot (about 95 °C) and cool water.
View Article and Find Full Text PDF