Publications by authors named "Seyed Mohsen Dehnavi"

In this project, a sensitive fluorescent aptasensor was fabricated to detect lead ions (Pb) by applying hollow gold nanoparticles (HGNPs) as a nano-carrier and rhodamine B (RDB) fluorescent dye as the signal agent. In the aptasensor that was created, the specific attachment of the aptamers to Pb ions led to the release of aptamer from the chitosan (CTS) coated-HGNPs loaded with RDB, causing an increase in fluorescence intensity due to the leakage of RDB. The method demonstrated specific detection of the target analyte, achieving a detection limit (LOD) of 1 ppb and a broad linear dynamic range spanning from 2 to 1000 ppb.

View Article and Find Full Text PDF

Due to its inherent membrane structure, a nanostructure enveloped by an active cell membrane possesses distinctive characteristics such as prolonged presence in the bloodstream, precise identification capabilities, and evasion of immune responses. This research involved the production of biomimetic nanoparticles, specifically hollow gold nanoparticles (HGNPs) loaded with methotrexate (MTX), which were further coated with cancer cell membrane. These nanoparticles were then adorned with AS1411 aptamer to serve as a targeting agent (Apt-CCM-HG@MTX).

View Article and Find Full Text PDF

The microalgae Haematococcus pluvialis are the main source of the natural antioxidant astaxanthin. However, the effective extraction of astaxanthin from these microalgae remains a significant challenge due to the rigid, non-hydrolyzable cell walls. Energy savings and high-efficiency cell disruption are essential steps in the recovery of the antioxidant astaxanthin from the cysts of H.

View Article and Find Full Text PDF

In this research, a polymeric composite based on a chitosan/bacterial cellulose (CS/BC) matrix filled with MIL-100(Fe) particles was prepared to solve the recyclability of issue MIL-100(Fe) particles and utilized as an efficient adsorbent for removing dacarbazine (DTIC) from wastewater. The adsorption capacity of the composite (CS/BC-MIL) was higher than both MIL-100(Fe) and the CS/BC polymeric matrix. The adsorption performance of the fabricated composite was evaluated through kinetics and isotherm studies.

View Article and Find Full Text PDF

In this study, a novel multifunctional nanocomposite wound dressing was developed, consisting of TEMPO-oxidized bacterial cellulose (TOBC) nanofibers functionalized with donut-like copper-based metal-organic frameworks (CuVB3 MOFs). These CuVB3 MOFs were constructed using copper nodes linked by vitamin B3 molecules, resulting in a copper nicotinate crystal structure as confirmed by X-ray diffraction. Electron microscopy confirmed the presence of donut-like microstructures with uniform element distribution in the synthesized MOFs.

View Article and Find Full Text PDF

The structural and physicochemical properties of chiral deep eutectic solvents (DESs) consisting of racemic mixtures of menthol and acetic acid (DES1), racemic mixtures of menthol and lauric acid (DES2), and racemic mixtures of menthol and pyruvic acid (DES3) for enantioselective extraction processes are investigated. Structural results, such as the radial distribution function (RDF) and the combined distribution function (CDF), indicate that the hydroxyl hydrogen of menthol has a dominant interaction with the carbonyl oxygen of the acids in the considered DESs. The number of hydrogen bonds and non-bonded interaction energies formed between -menthol and HBDs are larger than those with -menthol, resulting in the self-diffusion coefficient of -menthol being larger than that of -menthol.

View Article and Find Full Text PDF

In this work, new multi-layer nanocomposite coatings comprised of chitosan (CS) nanofibers functionalized using an innovative silver-based metal-organic framework (SOF) were developed. The SOFs were produced via a facile process using green and environmental-friendly materials. The CS-SOF nanocomposites were coated on hierarchical oxide (HO) layers fabricated on titanium substrates by an innovative two-step etching process.

View Article and Find Full Text PDF

Background: One of the most common diseases of the urinary tract is stones of this system, including kidney stones. About 70%-80% of kidney stones are calcium oxalate. Oxalyl-CoA decarboxylase is a single polypeptide included of 568 amino acids which play a key role in oxalate degradation.

View Article and Find Full Text PDF

One of the most vital aspects of the orthopedic implant field has been the development of multifunctional coatings that improve bone-implant contact while simultaneously preventing bacterial infection. The present study investigates the fabrication and characterization of multifunctional polysaccharides, including carboxymethyl cellulose (CMCn) and carboxymethyl chitosan nanofibers (CMCHn), as a novel implant coating on titania nanotube arrays (T). Field emission scanning electron microscopy (FESEM) images revealed a nanofibrous morphology with a narrow diameter for CMCn and CMCHn, similar to extracellular matrix nanostructures.

View Article and Find Full Text PDF

In this paper, novel zeolitic imidazolate framework-8 (ZIF-8) functionalized with Ag (Ag@ZIF-8) nanoparticles were synthesized through a green, facile and environmental-friendly process for wound dressing applications. X-ray diffraction revealed that the ZIF-8 and Ag@ZIF-8 were successfully synthesized by green solvents at ambient temperature. Field-emission scanning electron microscopy indicated a homogeneous porous blend of ∼30 nm chitosan/bacterial cellulose (CS/BC) nanofibers embedded with ∼80-110 nm nanoparticles of the ZIF-8 and Ag@ZIF-8.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is a universal heterogeneous disease that is characterized by genetic and epigenetic alterations. Immunotherapy using monoclonal antibodies (mAb) and cancer vaccines are substitute strategies for CRC treatment. When cancer immunotherapy is combined with chemotherapy, surgery, and radiotherapy, the CRC treatment would become excessively efficient.

View Article and Find Full Text PDF

High resolution is nearly lost at the expense of throughput in most conventional bioseparation methods. Nanoparticles, due to their high surface to volume ratio, are attractiveenzyme carriers, which can boost the performance of extraction manifold. Here, wereport design and application ofa method highly capable of improving the partitioning of α-amylase in aqueous two-phase system of polymer and salt.

View Article and Find Full Text PDF