Publications by authors named "Seyed Mohammadali Rahmati"

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from six cats.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats.

View Article and Find Full Text PDF

Purpose: The conventional aqueous outflow pathway, which includes the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and the inner wall endothelium of Schlemm's canal (SC), regulates intraocular pressure (IOP) by controlling the aqueous humor outflow resistance. Despite its importance, our understanding of the biomechanics and hydrodynamics within this region remains limited. Fluid-structure interaction (FSI) offers a way to estimate the biomechanical properties of the JCT and SC under various loading and boundary conditions, providing valuable insights that are beyond the reach of current imaging techniques.

View Article and Find Full Text PDF

The conventional aqueous outflow pathway, encompassing the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and inner wall endothelium of Schlemm's canal (SC), governs intraocular pressure (IOP) regulation. This study targets the biomechanics of low-flow (LF) and high-flow (HF) regions within the aqueous humor outflow pathway in normal and glaucomatous human donor eyes, using a combined experimental and computational approach. LF and HF TM/JCT/SC complex tissues from normal and glaucomatous eyes underwent uniaxial tensile testing.

View Article and Find Full Text PDF

The aqueous humor actively interacts with the trabecular meshwork (TM), juxtacanalicular tissue (JCT), and Schlemm's canal (SC) through a dynamic fluid-structure interaction (FSI) coupling. Despite the fact that intraocular pressure (IOP) undergoes significant fluctuations, our understanding of the hyperviscoelastic biomechanical properties of the aqueous outflow tissues is limited. In this study, a quadrant of the anterior segment from a normal human donor eye was dynamically pressurized in the SC lumen, and imaged using a customized optical coherence tomography (OCT).

View Article and Find Full Text PDF

Background: Aqueous humor outflow resistance in the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) endothelium of the conventional outflow pathway actively contribute to intraocular pressure (IOP) regulation. Outflow resistance is actively affected by the dynamic outflow pressure gradient across the TM, JCT, and SC inner wall tissues. The resistance effect implies the presence of a fluid-structure interaction (FSI) coupling between the outflow tissues and the aqueous humor.

View Article and Find Full Text PDF

Background: Although the tissues comprising the ocular conventional outflow pathway have shown strong viscoelastic mechanical response to aqueous humor pressure dynamics, the viscoelastic mechanical properties of the trabecular meshwork (TM), juxtacanalicular connective tissue (JCT), and Schlemm's canal (SC) inner wall are largely unknown.

Methods: A quadrant of the anterior segment from two human donor eyes at low- and high-flow (LF and HF) outflow regions was pressurized and imaged using optical coherence tomography (OCT). A finite element (FE) model of the TM, the adjacent JCT, and the SC inner wall was constructed and viscoelastic beam elements were distributed in the extracellular matrix (ECM) of the TM and JCT to represent anisotropic collagen.

View Article and Find Full Text PDF

Purpose: The laminar region of the optic nerve head (ONH), thought to be the site of damage to the retinal ganglion cell axons in glaucoma, is continuously loaded on its anterior and posterior surfaces by dynamic intraocular pressure (IOP) and orbital cerebrospinal fluid pressure (CSFP), respectively. Thus, translaminar pressure (TLP; TLP = IOP-CSFP) has been proposed as a glaucoma risk factor.

Methods: Three eye-specific finite element models of the posterior human eye were constructed, including full 3D microstructures of the load-bearing lamina cribrosa (LC) with interspersed laminar neural tissues (NTs), and heterogeneous, anisotropic, hyperelastic material formulations for the surrounding peripapillary sclera and adjacent pia.

View Article and Find Full Text PDF

Background And Objective: The trabecular meshwork (TM) consists of extracellular matrix (ECM) with embedded collagen and elastin fibers providing its mechanical support. TM stiffness is considerably higher in glaucoma eyes. Emerging data indicates that the TM moves dynamically with transient intraocular pressure (IOP) fluctuations, implying the viscoelastic mechanical behavior of the TM.

View Article and Find Full Text PDF

Background And Objective: Intraocular pressure (IOP) is determined by aqueous humor outflow resistance, which is a function of the combined resistance of Schlemm's canal (SC) endothelium and the trabecular meshwork (TM) and their interactions in the juxtacanalicular connective tissue (JCT) region. Aqueous outflow in the conventional outflow pathway results in pressure gradient across the TM, JCT, and SC inner wall, and induces mechanical stresses and strains that influence the geometry and homeostasis of the outflow system. The outflow resistance is affected by alteration in tissues' geometry, so there is potential for active, two-way, fluid-structure interaction (FSI) coupling between the aqueous humor (fluid) and the TM, JCT, and SC inner wall (structure).

View Article and Find Full Text PDF

Background And Objective: Accurate finite element (FE) simulation of the optic nerve head (ONH) depends on accurate mechanical properties of the load-bearing tissues. The peripapillary sclera in the ONH exhibits a depth-dependent, anisotropic, heterogeneous collagen fiber distribution. This study proposes a novel cable-in-solid modeling approach that mimics heterogeneous anisotropic collagen fiber distribution, validates the approach against published experimental biaxial tensile tests of scleral patches, and demonstrates its effectiveness in a complex model of the posterior human eye and ONH.

View Article and Find Full Text PDF

Glaucoma is among the leading causes of blindness worldwide that is characterized by irreversible damage to the retinal ganglion cell axons in the lamina cribrosa (LC) region of the optic nerve head (ONH), most often associated with elevated intraocular pressure (IOP). The LC is a porous, connective tissue structure that provides mechanical support to the axons as they exit the eye and the biomechanics of the LC microstructure likely play a crucial role in protecting the axons passing through it. There is a limited knowledge of the IOP-driven biomechanics of the LC microstructure, primarily due to its small size and the difficulty with imaging the LC both in vitro and in vivo.

View Article and Find Full Text PDF

Purpose: The stresses and deformations in the periodontal ligament (PDL) under the realistic kinetic loading of the jaw system, ., chewing, are difficult to be determined numerically as the mechanical properties of the PDL is variably present in different finite element (FE) models. This study was aimed to conduct a dynamic finite element (FE) simulation to investigate the role of the PDL (PDL) material models in the induced stresses and deformations using a simplified patient-specific FE model of a human jaw system.

View Article and Find Full Text PDF

Understanding of the corneal biomechanical properties is of high interest due to its potential application in the early diagnosis of keratoconus (KC). KC by itself is a non-inflammatory eye disorder causes corneal structural and/or compositional anomalies. The biomechanically weakened cornea is no longer able to preserve the normal shape of the cornea against the intraocular pressure (IOP) and gradually starts to bulge outward, invoking a conical shape and subsequent distorted vision.

View Article and Find Full Text PDF

Background And Objective: Biomechanical stresses and strains can be simulated in the optic nerve head (ONH) using the finite element (FE) method, and various element types have been used. This study aims to investigate the effects of element type on the resulting ONH stresses and strains.

Methods: A single eye-specific model was constructed using 3D delineations of anatomic surfaces in a high-resolution, fluorescent, 3D reconstruction of a human posterior eye, then meshed using our simple meshing algorithm at various densities using 4- and 10-noded tetrahedral elements, as well as 8- and 20-noded hexahedral elements.

View Article and Find Full Text PDF

The cerebellum is responsible for controlling the posture and walking stability of the body. The cerebellum can subject to the traumatic injuries following by complicated clinical problems, i.e.

View Article and Find Full Text PDF

Background: Keratoconus is recognized by asymmetrical thinning and bulging of the cornea, resulting in distortion in the surface of the cornea. Keratoconus also alters the biomechanical properties of the cornea, which can be an indicator of the healthy and keratoconus eyes. This study was aimed at employing a combination of clinical data, finite element method (FEM), and artificial neural network (ANN) to establish a novel biomechanical- based diagnostic method for the keratoconus eyes.

View Article and Find Full Text PDF

The parametric optimization techniques have been widely employed to predict human gait trajectories; however, their applications to reveal the other aspects of gait are questionable. The aim of this study is to investigate whether or not the gait prediction model is able to justify the movement trajectories for the higher average velocities. A planar, seven-segment model with sixteen muscle groups was used to represent human neuro-musculoskeletal dynamics.

View Article and Find Full Text PDF

Understanding the mechanical properties of the human brain is deemed important as it may subject to various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the various types of complex loadings during the Traumatic Brain Injury (TBI). Although many studies so far have been conducted to quantify the mechanical properties of the brain, there is a paucity of knowledge on the mechanical properties of the human brain tissue and the damage of its axon fibers under the frontal lobe of the human brain.

View Article and Find Full Text PDF

It has been indicated that the content and structure of the elastin and collagen of the arterial wall can subject to a significant alteration due to the atherosclerosis. Consequently, a high tissue stiffness, stress, and even damage/rupture are triggered in the arterial wall. Although many studies so far have been conducted to quantify the mechanical properties of the coronary arteries, none of them consider the role of collagen damage of the healthy and atherosclerotic human coronary arterial walls.

View Article and Find Full Text PDF