Publications by authors named "Seyed Mohammad Taghdisi"

Background: Presented here is a straightforward detection system designed to track non-small cell lung cancer (specifically A549 cells) using a combination of liquid crystals (LCs) and aptamer sequences, marking a pioneering approach in this field. A change in the alignment of LCs from perpendicular to random status by the aptamer-cell complex altered the murky polarized background of the aptasensor to multicolored.

Results: The LC-designed aptasensor could determine A549 cancerous cells in the range of 2.

View Article and Find Full Text PDF
Article Synopsis
  • Acrylamide, found in heat-processed foods, poses health risks such as neurotoxicity and cancer, underscoring the need for effective detection methods.
  • A user-friendly aptasensor has been developed to rapidly quantify low levels of acrylamide in nuts using a unique chemical engineering technique that visually indicates the presence of the chemical.
  • The aptasensor demonstrates high sensitivity with a detection limit of just 0.106 amol/L and has been successfully tested on various roasted nut samples, proving its effectiveness for food safety monitoring.*
View Article and Find Full Text PDF

Scientific research in recent decades has affirmed an increase in cancer incidence as a cause of death globally. Cancer can be considered a plurality of various diseases rather than a single disease, which can be a multifaceted problem. Hence, cancer therapy techniques acquired more accelerated and urgent approvals compared to other therapeutic approaches.

View Article and Find Full Text PDF

In this project, a sensitive fluorescent aptasensor was fabricated to detect lead ions (Pb) by applying hollow gold nanoparticles (HGNPs) as a nano-carrier and rhodamine B (RDB) fluorescent dye as the signal agent. In the aptasensor that was created, the specific attachment of the aptamers to Pb ions led to the release of aptamer from the chitosan (CTS) coated-HGNPs loaded with RDB, causing an increase in fluorescence intensity due to the leakage of RDB. The method demonstrated specific detection of the target analyte, achieving a detection limit (LOD) of 1 ppb and a broad linear dynamic range spanning from 2 to 1000 ppb.

View Article and Find Full Text PDF

In the current study, a core-shell inorganic nanostructure comprising a gold nanorod core and -mesoporous manganese dioxide shell was synthesized. Then, the mesoporous manganese dioxide shell was loaded with doxorubicin (DOX) and then coated with pluronic F127 and pluronic F127-folic acid conjugate (1.5:1 wt ratio of pluronic F127: pluronic F127-folic acid conjugate) to prepare targeted final platform.

View Article and Find Full Text PDF

Due to the exceedingly poisonous properties of Pb, it is imperative to conduct a thorough assessment of its quantity in both biological and environmental samples, as this is crucial for safeguarding public health. This study describes an economic turn-off fluorescent aptasensor for the quantitative analysis of Pb employing 3,4,9,10-perylenetetracarboxylic acid diimide (PTCDI) as a cost-effective fluorophore, gold nanoparticles (AuNPs) as separating agent and an elongated aptamer as both targeting agent and PTCDI loading site. The fundamental principle of the suggested fluorescent aptasensor, which is based on PTCDI, relies on detecting variations in the fluorescence intensity of PTCDI when an elongated aptamer (as single-stranded DNA) is present or absent.

View Article and Find Full Text PDF

Chemotherapy as a common anticancer therapeutic modality is often challenged by various obstacles such as poor stability, low solubility, and severe side effects of chemotherapeutic agents as well as multidrug resistance of cancerous cells. Nanoparticles in the role of carriers for chemotherapeutic drugs and platforms for combining different therapeutic approaches have effectively participated in overcoming such drawbacks. In particular, nanoparticles able to induce their therapeutic effect in response to specific stimuli like tumor microenvironment characteristics (e.

View Article and Find Full Text PDF

In this study, a platform was fabricated by combining a cationic lipid, 1,2-Dioleoyl-3-trimethylammonium-propane (DOTAP) with mesenchymal stem cell membrane (MSCM) to produce a positively charged hybrid vesicle. The prepared hybrid vesicle was used to condense BIRC5 CRISPR/Cas9 plasmid for survivin (BIRC5) gene editing. The Sgc8-c aptamer (against protein tyrosine kinase 7) was then attached to the surface of the prepared NPs through electrostatic interactions.

View Article and Find Full Text PDF

Using a chemiluminescence reaction between luminol and HO in basic solution, an ultrasensitive electrochemiluminescence (ECL) aptasensor was developed for the determination of tobramycin (TOB), as an aminoglycoside antibiotic. TiC/Ni/Sm-LDH-based nanocomposite effectively catalyzes the oxidation of luminol and decomposition of HO, leading to the formation of different reactive oxygen species (ROSs), thus amplifying the ECL signal intensity of luminol, which can be used for the determination of TOB concentration. To evaluate the performance of the electrochemiluminescence aptasensor and synthesized nanocomposite, different methods such as cyclic voltammetry (CV) and electrochemical impedance spectroscopy (EIS) analyses were performed.

View Article and Find Full Text PDF
Article Synopsis
  • An enzyme-free fluorescent aptasensor was developed for the sensitive detection of lead (Pb) ions, a dangerous pollutant in the environment and food.
  • The aptasensor uses a nanocomposite made of zeolitic imidazolate frameworks-8 and gold nanoparticles to quench the fluorescence of a carboxyfluorescein signal reporter, with a selective binding mechanism that enhances detection.
  • This method accurately measures Pb concentrations from 1 pM to 1 nM, with a very low detection limit of 0.24 pM, and can be used on various samples such as fish, shrimp, tap water, milk, and serum, making it a promising tool for food safety checks.
View Article and Find Full Text PDF

In the current study, a tumor microenvironment responsive (TME-responsive) copper peroxide-mesoporous silica core-shell structure with HO self-supplying ability was fabricated for targeted ferroptosis/chemotherapy against metastatic breast cancer. At the first stage, copper peroxide nanodot was synthesized and subsequently coated with mesoporous organosilica shell. After (3-Aminopropyl) triethoxysilane (APTMS) functionalization of the organosilica shell, doxorubicin (DOX) was loaded in the mesoporous structure of the nanoparticles and then, heterofunctional COOH-PEG-Maleimide was decorated on the surface through EDC/NHS chemistry.

View Article and Find Full Text PDF

Combination therapy using chemo-photothermal therapy (chemo-PTT) shows great efficacy toward tumor ablation in preclinical studies. Besides, lipopolymersomes as a hybrid nanocarriers, integrate advantages of liposomes and polymersomes in a single platform in order to provide tremendous biocompatibility, biodegradability, noteworthy loading efficacy for both hydrophobic and hydrophilic drugs with adjustable drug release and high stability. In this study, a multipurpose lipopolymersome was fabricated for guided chemotherapy-PTT and NIR-imaging of melanoma.

View Article and Find Full Text PDF

Aluminum phosphide (AlP) is the main component of rice tablets (a pesticide), which produces phosphine gas (PH3) when exposed to stomach acid. The most important symptoms of PH3 toxicity include, lethargy, tachycardia, hypotension, and cardiac shock. It was shown that Iodine can chemically react with PH3, and the purpose of this study is to investigate the protective effects of Lugol solution in poisoning with rice tablets.

View Article and Find Full Text PDF

Breast cancer treatment can be challenging, but a targeted drug delivery system (DDS) has the potential to make it more effective and reduce side effects. This study presents a novel nanotherapeutic targeted DDS developed through the self-assembly of an amphiphilic di-block copolymer to deliver the chemotherapy drug SN38 specifically to breast cancer cells. The vehicle was constructed from the PHPMA-b-PEAMA diblock copolymer synthesized via RAFT polymerization.

View Article and Find Full Text PDF

Aims: Resveratrol (RSV) is a polyphenolic substance found in numerous natural products. Despite the wide range of therapeutic activities, including antioxidant and anti-inflammatory effects, the poor pharmacokinetic characteristics decrease the RSV bioavailability following oral administration. Milk-derived exosomes (MEXOs), as a class of natural nanocarriers, are promising candidates for oral drug delivery approaches.

View Article and Find Full Text PDF

Due to its inherent membrane structure, a nanostructure enveloped by an active cell membrane possesses distinctive characteristics such as prolonged presence in the bloodstream, precise identification capabilities, and evasion of immune responses. This research involved the production of biomimetic nanoparticles, specifically hollow gold nanoparticles (HGNPs) loaded with methotrexate (MTX), which were further coated with cancer cell membrane. These nanoparticles were then adorned with AS1411 aptamer to serve as a targeting agent (Apt-CCM-HG@MTX).

View Article and Find Full Text PDF

Thrombin, a proteolytic enzyme, plays an essential role in catalyzing many blood clotting reactions. Thrombin can act as a marker for some blood-related diseases, such as leukemia, thrombosis, Alzheimer's disease and liver disease. Therefore, its diagnosis is of great importance in the fields of biological and medical research.

View Article and Find Full Text PDF

Liquid crystalline nanoparticles (LCNPs) have gained much attention in cancer nanomedicines due to their unique features such as high surface area, storage stability, and sustained-release profile. In the current study, a novel LCNP for co-encapsulation of BiO and hydrophilic doxorubicin (DOX) was fabricated and functionalized with folic acid (FA) to achieve efficient tumor targeting toward CT-scan imaging and chemotherapy of melanoma in vitro and in vivo. LCNPs BiO NPs were prepared using glycerol monooleate-pluronic F-127 (GMO/PF127/water).

View Article and Find Full Text PDF

The objective of this investigation was to develop a self-assembled, dual-functionalized delivery system that could effectively transport doxorubicin (DOX) to cancer cells through the use of AS1411 aptamer and hyaluronic acid polymer (HA). The ultimate goal is an improved targeting approach for more efficient treatment. The core of this system comprised polyethylenimine (PEI) and FOXM1 aptamer, which was coated by HA.

View Article and Find Full Text PDF

As a potent computational methodology, molecular dynamics (MD) simulation provides advantageous knowledge about biological compounds from the molecular viewpoint. In particular, MD simulation gives exact information about aptamer strands, such as the short synthetic oligomers, their orientation, binding sites, folding-unfolding state, and conformational re-arrangement. Also, the effect of the different chemicals and biochemicals as the components of aptamer-based sensors (aptasensors) on the aptamer-target interaction can be investigated by MD simulation.

View Article and Find Full Text PDF

Here, a novel targeted nanostructure complex was designed as an alternative to the traditional treatment approaches for breast cancer. A delivery system utilizing CuS nanoparticles (CuS NPs) was developed for the purpose of targeted administration of doxorubicin (Dox), an anticancer agent. To regulate Dox release, chitosan (CS), a biodegradable and hydrophilic polymer with biocompatible properties, was applied to coat the Dox-loaded CuS NPs.

View Article and Find Full Text PDF

One of the revolutionized cancer treatment is active targeting nanomedicines. This study aims to create a dual-targeted drug delivery system for Epirubicin (EPI) to cancer cells. Hyaluronic acid (HA) is the first targeting ligand, and 5TR1 aptamer (5TR1) is the second targeting ligand to guide the dual-targeted drug delivery system to the cancer cells.

View Article and Find Full Text PDF

Given the highly mutagenic and carcinogenic nature of Aflatoxin M1 (AFM1), the quantity assessment of AFM1 residues in milk and dairy products is necessary to maintain consumer health and food safety. Herein, CRISPR-Cas12a-based colorimetric aptasensor was developed using the catalytic activity of flower-like nanozymes of MnO and trans-cleavage property of CRISPR-Cas12a system to quantitatively detect AFM1. The basis of the developed colorimetric aptasensor relies on whether or not the CRISPR-Cas12a system is activated, as well as the contrast in oxidase-mimicking capability exhibited by flower-like MnO nanozymes when AFM1 is absent or present.

View Article and Find Full Text PDF