An immunosensor based on gold nanorods (AuNRs) etchant activity of a metal-organic framework (MOF): MIL-88B(Fe)-reduced graphene oxide (rGMOF) was developed for the determination of prostate-specific antigen (PSA). Several techniques, including FTIR, UV-Vis spectrophotometry, XRD, and electron microscopy, were employed to characterize the MOFs containing iron-oxygen clusters on the surface of reduced graphene oxide. Enzyme mimetic activity of rGMOF before and after bioconjugation with antibodies was calculated as 8.
View Article and Find Full Text PDFA simple model is designed for an inductive immunosensor in which the magnetic particles are attached to the bioreceptors to form a sandwich on the surface of an inductor. The inductor consists of a coil covered on a silicon oxide wafer. The coil comprises 250 turns of a planar gold wire, which is approximately 200 nm thick and 392 mm long, placed in a circle with a diameter of 2 mm.
View Article and Find Full Text PDFImmunosensors based on interdigitated electrodes (IDEs), have recently demonstrated significant improvements in the sensitivity of capacitance detection. Herein, a novel type of highly sensitive, compact and portable immunosensor based on a gold interdigital capacitor has been designed and developed for the rapid detection of hepatitis B surface antigen (HBsAg). To improve the efficiency of antibody immobilization and time-saving, a self-assembled monolayer (SAM) of 2-mercaptoethylamine film was coated on IDEs.
View Article and Find Full Text PDFAn electrochemical immunosensor was developed for the detection of hepatitis B surface antigen (HBsAg). The biotinylated hepatitis B surface antibody was immobilized on streptavidin magnetic nanoparticles and used for targeting the HBsAg. By the addition of horseradish peroxidase conjugated with secondary antibody (HRP-HBsAb), a sandwich-type immunoassay format was formed.
View Article and Find Full Text PDF