Publications by authors named "Seyed M Sadat"

Background: There have been great efforts in vaccine design against HIV-1 since 1981. Various approaches have been investigated, including optimized delivery systems and effective adjuvants to enhance the efficacy of selective antigen targets. In this study, we evaluated the efficiency of IMT-P8 and LDP12 cell penetrating peptides in eliciting immune responses against HIV-1 Nef-MPER-V3 fusion protein as an antigen candidate.

View Article and Find Full Text PDF

Multiple myeloma is a type of malignant neoplasia whose treatment has changed over the past decade. This study aimed to investigate the effects of combination of Adenovector-carrying interleukin-24 and herpes simplex virus 1 thymidine kinase/ganciclovir on tumor growth, autophagy, and unfolded protein response mechanisms in mouse model of multiple myeloma. Six groups of mice, including Ad-HSV-tk/GCV, Ad-IL-24, Ad-HSV-tk/IL-24, Ad-GFP, and positive and negative controls, were investigated, and each group was injected every 72 h.

View Article and Find Full Text PDF

The HIV-1 virus has been regarded as a catastrophe for human well-being. The global incidence of HIV-1-infected individuals is increasing. Hence, development of effective immunostimulatory molecules has recently attracted an increasing attention in the field of vaccine design against HIV-1 infection.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates three therapeutic HPV vaccine candidates using a recombinant protein, tumor cell lysate, and engineered exosomes that incorporate a fusion protein (Hsp27-E7), aiming to treat existing HPV-related lesions and cancers.
  • - The vaccines were tested in mice, demonstrating a strong immune response and a 75% survival rate across all three vaccine types, indicating their effectiveness in preventing tumor development.
  • - Among the candidates, the engineered exosome-based vaccine (Exo-Hsp27-E7) showed the best results in terms of immune response and safety, making it a promising option for future HPV vaccinations.
View Article and Find Full Text PDF

To relieve the limitations of the human papillomavirus (HPV) vaccines based on L1 capsid protein, vaccine formulations based on RG1 epitope of HPV L2 using various built-in adjuvants are under study. Herein, we describe design and construction of a rejoined peptide (RP) harboring HPV16 RG1 epitope fused to TLR4/5 agonists and a tetanus toxoid epitope, which were linked by the (GGGS) linker in tandem. In silico analyses indicated the proper physicochemical, immunogenic and safety profile of the RP.

View Article and Find Full Text PDF

The coronavirus disease (COVID-19) pandemic has imposed deployment of an effective vaccine as a worldwide health priority. The new variants of SARS-CoV-2 have also brought serious concerns due to virus eradiation hesitancy. In this study, we evaluated the protective immune system activity of a recombinant viral vector-based vaccine candidate encoding a fusion spike, membrane and nucleocapsid proteins, Spike (528-1273aa)-M-N, in BALB/c via two different routes of delivery, intranasal and subcutaneous.

View Article and Find Full Text PDF

Background: There is a wide range of challenges through the use of nano-material in buildings. By developing construction industries the use of flame retardant nano-materials is a hurdle for human health. However occupational exposure measurement is not applicable for nano-particles monitoring.

View Article and Find Full Text PDF

Background: Acquired immunodeficiency syndrome (HIV/AIDS) is still a major global concern and no effective therapeutic vaccine has been produced to prevent the problem. Among HIV-1 proteins, vif as a basic cytoplasmic protein of HIV-1 is involved in late stages of viral generation and plays important role in HIV-1 virion replication. It also increases the stability of virion cores, which probably inhibits early degradation of viral entry.

View Article and Find Full Text PDF

Introduction: Considerable efforts have been made to treat and prevent acute and chronic infections caused by the hepatitis C virus (HCV). Current treatments are unable to protect people from reinfection. Hence, there is a need for development of both preventive and therapeutic HCV vaccines.

View Article and Find Full Text PDF

Various approaches have been investigated to prevent or eliminate HIV-1 since 1981. However, the virus has been affecting human population worldwide with no effective vaccine yet. The conserved regions among the viral genes are suitable targets in mutable viruses to induce the immune responses via an effective delivery platform.

View Article and Find Full Text PDF

The emerging Coronavirus Disease 2019 (COVID-19) pandemic has posed a serious threat to the public health worldwide, demanding urgent vaccine provide. According to the virus feature as an RNA virus, a high rate of mutations imposes some vaccine design difficulties. Bioinformatics tools have been widely used to make advantage of conserved regions as well as immunogenicity.

View Article and Find Full Text PDF

Background: There have been massive efforts on vaccine development against HIV-1 since its discovery. Various approaches have been taken to attention, including rational vaccine design, optimized delivery systems and heterologous regimen to eradicate the virus. DNA vaccines fundamentally induce host immune responses by genetically engineered plasmids encoding antigens and expressed in vivo without the need of the specific delivery system.

View Article and Find Full Text PDF

Background: Finding a safe and effective vaccine for HIV-1 infection is still a major concern.

Objective: This study aimed to design and produce a recombinant Nef-MPER V3 protein fused with IMT-P8 using E. coli expression system to provide a potential HIV vaccine with high cellular penetrance.

View Article and Find Full Text PDF

Background: There is no effective and safe preventive/therapeutics vaccine against HIV-1 worldwide. Different viral proteins such as Nef, and two regions of Env including; variable loop of gp120 (V3) and membrane proximal external region of gp41 (MPER) are particularly important for vaccine development in different strategies and they are also the primary targets of cellular and humoral immune responses. On the other side, LDP12 is a new cell-penetrating peptide (CPP) which is capable of therapeutic application and cargoes delivery across the cellular membrane.

View Article and Find Full Text PDF
Article Synopsis
  • Research has focused on developing preventive or therapeutic vaccines for HIV-1, with current approaches including fusion proteins to target conserved viral regions while using bioinformatics to predict antigen features.
  • The study specifically evaluated a p24-Nef fusion protein designed through in silico methods as a potential therapeutic vaccine, assessing its expression in laboratory settings.
  • Results showed successful expression and confirmation of the fusion protein in cells, indicating its potential for use in therapeutic applications against HIV-1.
View Article and Find Full Text PDF

Background: The delivery of exogenous genes into cells for functional expression is required for development of DNA vaccine and gene therapy in medicine and pharmacology. Cell Penetrating Peptides (CPPs) were considered to mediate gene and drug delivery into living cells. In this study, an attempt was made to evaluate the efficiency of an arginine-rich CPP, HR9, in HCV NS3 gene delivery compared to TurboFect cationic polymer and supercharged +36 GFP into HEK-293T cells.

View Article and Find Full Text PDF

Background: Hepatitis C virus (HCV) infection is a major issue of public health. It seems of paramount importance to find an effective vaccine against HCV infection. The best vaccine candidate should induce robust cellular responses.

View Article and Find Full Text PDF

Background: An effective vaccine against human immunodeficiency virus 1 (HIV-1) is an important global health priority. Despite many efforts in the development of the HIV-1 vaccine, no effective vaccine has been approved yet. Recently, polyepitope vaccines including several immunogenic and conserved epitopes of HIV-1 proteins have received special attention.

View Article and Find Full Text PDF

Objectives: Developing an effective HIV vaccine that stimulates the humoral and cellular immune responses is still challenging because of the diversity of HIV-1 virus, polymorphism of human HLA and lack of a suitable delivery system.

Results: Using bioinformatics tools, we designed a DNA construct encoding multiple epitopes. These epitopes were highly conserved within prevalent HIV-1 subtypes and interacted with prevalent class I and II HLAs in Iran and the world.

View Article and Find Full Text PDF

Hepatitis C virus (HCV) is a major health problem all over the world. Among HCV proteins, nonstructural protein 3 (NS3) is one of the most promising target for anti-HCV therapy and a candidate for vaccine design. DNA vaccine is an efficient approach to stimulate antigen-specific immunity but the main problem with that is less immunogenic efficiency in comparison with traditional vaccines.

View Article and Find Full Text PDF

To improve an effective hepatitis C virus (HCV) therapeutic vaccine, induction of a strong and long term HCV antigen-specific immune response is an important parameter. HCV non-structural protein 3 (NS3) has antigenic properties and plays a major role in viral clearance. In this study, DNA constructs encoding HCV NS3 and heat shock protein 27 (Hsp27)-NS3 genes, and the recombinant (r) NS3 and rHsp27-NS3 proteins complexed with HR9 and Cady-2 cell penetrating peptides (CPPs) were utilized to evaluate antibody, cytokine and Granzyme B secretion in mice.

View Article and Find Full Text PDF

Background: Among the various types of pharmaceuticals, vaccines have a special place. However, in the case of HIV, nearly after 40 years of its discovery, an effective vaccine still is not available. The reason lies in several facts mainly the variability and smartness of HIV as well as the complexity of the interaction between HIV and immune responses.

View Article and Find Full Text PDF

Background: Several approaches have not been successful to suppress HIV (Human immunodeficiency virus) infection among infected individuals or to prevent it yet. In order to expand strong HIV specific humoral and cellular responses, Virus-like particles (VLPs) as potential vaccines show significant increase in neutralizing antibodies secretion, T-cell count and also secretion of cytokines.

Objective: This study aimed at immunological evaluation of VLPs harboring high copy of MPERV3 in BALB/c mice.

View Article and Find Full Text PDF

Background: Acquired immune deficiency syndrome (HIV/AIDS) has been a major global health concern for over 38 years. No safe and effective preventive or therapeutic vaccine has been developed although many products have been investigated. Computational methods have facilitated vaccine developments in recent decades.

View Article and Find Full Text PDF