High-risk neuroblastoma remains a profound clinical challenge that requires eradication of neuroblastoma cells from a variety of organ sites, including bone marrow, liver, and CNS, to achieve a cure. While preclinical modeling is a powerful tool for the development of novel cancer therapies, the lack of widely available models of metastatic neuroblastoma represents a significant barrier to the development of effective treatment strategies. To address this need, we report a novel luciferase-expressing derivative of the widely used Th-MYCN mouse.
View Article and Find Full Text PDFProteasome inhibitors have emerged as an effective therapy for the treatment of haematological malignancies; however, their efficacy can be limited by the development of tumour resistance mechanisms. Novel combination strategies including the addition of TLR adjuvants to increase cell death and augment immune responses may help enhance their effectiveness. Although generally thought to inhibit inflammatory responses and NF-κB activation, we found that under specific conditions proteasome inhibitors can promote inflammatory responses by mediating IL-1β maturation and secretion after TLR stimulation.
View Article and Find Full Text PDFIn the past, we showed that exposure to abiotic and biotic stresses changes the homologous recombination frequency (HRF) in somatic tissue and in the progeny. In current work we planned to answer the following question: do stress intensity/duration and time during exposure influence changes in somatic HRF and transgenerational changes in HRF? Here, we tested the effects of exposure to UV-C, cold and heat on HRF at 7, 14, 21 and 28Â days post germination (dpg). We found that exposure at 14 and 21Â dpg resulted in a higher increase in HRF as compared to exposure at 7Â dpg; longer exposure to UV-C resulted in a higher frequency of HR, whereas prolonged exposure to cold or heat, especially at later developmental stages, had almost no effect on somatic HRF.
View Article and Find Full Text PDFThe single-stranded DNA binding activity of the Escherichia coli RecA protein is crucial for homologous recombination to occur. This and other biochemical activities of ssDNA binding proteins may be affected by various factors. In this study, we analyzed the effect of CaCl(2), NaCl and NH(4)NO(3) salts in combination with the pH and nucleotide cofactor effect on the ssDNA-binding activity of RecA.
View Article and Find Full Text PDF