Fluorescent proteins (FPs) stand as pivotal tools extensively employed across diverse biological research endeavors in various model systems. However, long-standing concerns surround their use due to the numerous side effects associated with their expression. Recent investigations have brought to light the significance of hydrogen peroxide (HO) that is associated with the maturation process of green fluorescent protein (GFP) fluorophores.
View Article and Find Full Text PDFMetabolic enzymes can adapt during energy stress, but the consequences of these adaptations remain understudied. Here, we discovered that hexokinase 1 (HK1), a key glycolytic enzyme, forms rings around mitochondria during energy stress. These HK1-rings constrict mitochondria at contact sites with the endoplasmic reticulum (ER) and mitochondrial dynamics protein (MiD51).
View Article and Find Full Text PDFChemogenetic Operation of iNTRacellular prOton Levels (pH-Control) is a novel substrate-based enzymatic method that enables precise spatiotemporal control of ultralocal acidification in cultured cell lines and primary neurons. The genetically encoded biosensor SypHer3s showed that pH-Control effectively acidifies cytosolic, mitochondrial, and nuclear pH exclusively in the presence of β-chloro-d-alanine in living cells in a concentration-dependent manner. The pH-Control approach is promising for investigating the ultralocal pH imbalance associated with many diseases.
View Article and Find Full Text PDFSARS-CoV-2 has caused a global pandemic, infecting millions of people. An effective preventive vaccine against this virus is urgently needed. Here, we designed and developed a novel formulated recombinant receptor-binding domain (RBD) nucleocapsid (N) recombinant vaccine candidates.
View Article and Find Full Text PDFBackground: MDA-7/IL-24 cytokine has shown potent antitumor properties in various types of cancer without exerting any significant toxicity on healthy cells. It has also been proved to encompass pro-immune Th1 cytokine-like behavior. Several E7 DNA vaccines have developed against human papillomavirus (HPV)-related cervical cancer.
View Article and Find Full Text PDFBackground: Human pegivirus 1 (HPgV-1) is a Positive-sense single-stranded RNA (+ ssRNA) virus, discovered in 1995 as a Flaviviridae member, and the closest human virus linked to HCV. In comparison to HCV, HPgV-1 seems to be lymphotropic and connected to the viral group that infects T and B lymphocytes. HPgV-1 infection is not persuasively correlated to any known human disease; nevertheless, multiple studies have reported a connection between chronic HPgV-1 infection and improved survival in HPgV-1/HIV co-infected patients with a delayed and favorable impact on HIV infection development.
View Article and Find Full Text PDFSevere Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) directly interacts with host's epithelial and immune cells, leading to inflammatory response induction, which is considered the hallmark of infection. The host immune system is programmed to facilitate the clearance of viral infection by establishing a modulated response. However, SARS-CoV-2 takes the initiative and its various structural and non-structural proteins directly or indirectly stimulate the uncontrolled activation of injurious inflammatory pathways through interaction with innate immune system mediators.
View Article and Find Full Text PDFThe expansion of myeloid-derived suppressor cells (MDSCs), known as heterogeneous population of immature myeloid cells, is enhanced during several pathological conditions such as inflammatory or viral respiratory infections. It seems that the way MDSCs behave in infection depends on the type and the virulence mechanisms of the invader pathogen, the disease stage, and the infection-related pathology. Increasing evidence showing that in correlation with the severity of the disease, MDSCs are accumulated in COVID-19 patients, in particular in those at severe stages of the disease or ICU patients, contributing to pathogenesis of SARS-CoV2 infection.
View Article and Find Full Text PDFBackground: Several studies on gamma-irradiated influenza A virus (γ-Flu) have revealed its superior efficacy for inducing homologous and heterologous virus-specific immunity. However, many inactivated vaccines, notably in nasal delivery, require adjuvants to increase the quality and magnitude of vaccine responses.
Methods: To illustrate the impacts of co-administration of the gamma-irradiated H1N1 vaccine with poly (I:C) and recombinant murine CCL21, either alone or in combination with each other, as adjuvants on the vaccine potency, mice were inoculated intranasally 3 times at one-week interval with γ-Flu alone or with any of the three adjuvant combinations and then challenged with a high lethal dose (10 LD50) of A/PR/8/34 (H1N1) influenza virus.
This paper reviews epigenetic mechanisms by which influenza viruses affect cellular gene activity to control their life cycles, aiming to provide new insights into the complexity of functional interactions between viral and cellular factors, as well as to introduce novel targets for therapeutic intervention and vaccine development against influenza infections.
View Article and Find Full Text PDFVirol J
November 2020
An amendment to this paper has been published and can be accessed via the original article.
View Article and Find Full Text PDFBackground: Influenza virus infection is among the most detrimental threats to the health of humans and some animals, infecting millions of people annually all around the world and in many thousands of cases giving rise to pneumonia and death. All those health crises happen despite previous and recent developments in anti-influenza vaccination, suggesting the need for employing more sophisticated methods to control this malign infection. Main body The innate immunity modules are at the forefront of combating against influenza infection in the respiratory tract, among which, innate T cells, particularly gamma-delta (γδ) T cells, play a critical role in filling the gap needed for adaptive immune cells maturation, linking the innate and adaptive immunity together.
View Article and Find Full Text PDF[This corrects the article DOI: 10.1186/s12935-020-01476-5.].
View Article and Find Full Text PDFCancer immunotherapy has been emerged as a promising strategy for treatment of a broad spectrum of malignancies ranging from hematological to solid tumors. One of the principal approaches of cancer immunotherapy is transfer of natural or engineered tumor-specific T-cells into patients, a so called "adoptive cell transfer", or ACT, process. Construction of allogeneic T-cells is dependent on the employment of a gene-editing tool to modify donor-extracted T-cells and prepare them to specifically act against tumor cells with enhanced function and durability and least side-effects.
View Article and Find Full Text PDFRespiratory virus infections are among the most prevalent diseases in humans and contribute to morbidity and mortality in all age groups. Moreover, since they can evolve fast and cross the species barrier, some of these viruses, such as influenza A and coronaviruses, have sometimes caused epidemics or pandemics and were associated with more serious clinical diseases and even mortality. The recently identified Coronavirus Disease 2019 (COVID-19) caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a Public Health Emergency of International concern and has been associated with rapidly progressive pneumonia.
View Article and Find Full Text PDFBackground: Newcastle disease virus (NDV) has shown noticeable oncolytic properties, especially against cervical cancer. However, in order to improve the spread rate and oncotoxicity of the virus, employment of other therapeutic reagents would be helpful. It has been shown that some viral fusogenic membrane glycoproteins (FMGs) could facilitate viral propagation and increase the infection rate of tumor cells by oncolytic viruses.
View Article and Find Full Text PDFBackground: Human papillomavirus (HPV)-associated malignancy remain a main cause of cancer in men and women. Cancer immunotherapy has represented great potential as a new promising cancer therapeutic approach. Here, we report Mesenchymal stem cells (MSCs) as a carrier for the delivery of oncolytic Newcastle disease virus (NDV) for the treatment of HPV-associated tumor.
View Article and Find Full Text PDFCompared with conventional cancer treatments, the main advantage of oncolytic virotherapy is its tumor-selective replication followed by the destruction of malignant cells without damaging healthy cells. Accordingly, this kind of biological therapy can potentially be used as a promising approach in the field of cancer management. Given the failure of traditional monitoring strategies (such as immunohistochemical analysis (in providing sufficient safety and efficacy necessary for virotherapy and continual pharmacologic monitoring to track pharmacokinetics in real-time, the development of alternative strategies for ongoing monitoring of oncolytic treatment in a live animal model seems inevitable.
View Article and Find Full Text PDFDespite tremendous efforts toward vaccination, influenza remains an ongoing global threat. The induction of strain-specific neutralizing antibody responses is a common phenomenon during vaccination with the current inactivated influenza vaccines, so the protective effect of these vaccines is mostly strain-specific. There is an essential need for the development of next-generation vaccines, with a broad range of immunogenicity against antigenically drifted or shifted influenza viruses.
View Article and Find Full Text PDFAfter publication of this article [1], it was brought to our attention that there are some errors in the section of 'Authors' contributions'.
View Article and Find Full Text PDFOncolytic virotherapy has currently emerged as a promising approach upon which scientists have been able to induce tumor-specific cell death in a broad spectrum of malignancies. Paramyxoviruses represent intrinsic oncolytic capability, which makes them excellent candidates to be widely used in oncolytic virotherapy. The mechanisms through which these viruses destroy the cancerous cells involve triggering the autophagic machinery and apoptosis in target cells.
View Article and Find Full Text PDF