Purpose: The problem of image denoising in single-photon emission computed tomography (SPECT) myocardial perfusion imaging (MPI) is a fundamental challenge. Although various image processing techniques have been presented, they may degrade the contrast of denoised images. The proposed idea in this study is to use a deep neural network as the denoising procedure during the iterative reconstruction process rather than the post-reconstruction phase.
View Article and Find Full Text PDFComprehension of the typical distribution pattern of 99mTc-methylenediphosphonate (MDP) is crucial for precise interpretation of bone scintigraphy. The presence of nonskeletal activity is predominantly confined to the kidneys and bladder, attributed to the standard renal excretion of 99mTc-MDP. We discuss a 70-year-old woman with a known case of brucellosis using rifampin, doxycycline, trimethoprim/sulfamethoxazole (co-trimoxazole), and ciprofloxacin for the past 8 months.
View Article and Find Full Text PDFBackground: Recent studies have shown that the right ventricular (RV) quantitative analysis in myocardial perfusion imaging (MPI) SPECT can be beneficial in the diagnosis of many cardiopulmonary diseases. This study proposes a new algorithm for right ventricular 3D segmentation and quantification.
Methods: The proposed Quantitative Cardiac analysis in Nuclear Medicine imaging (QCard-NM) algorithm provides RV myocardial surface estimation and creates myocardial contour using an iterative 3D model fitting method.
Noise reduction while preserving spatial resolution is one of the most important challenges in the reconstructing of emission tomography images. One of the resolving methods is the Bowsher maximum a-posteriori expectation-maximization reconstruction (MAPEM) algorithm. This method considers a binary selection of the neighbors of each voxel based on the prior anatomical values to use in the regularization function.
View Article and Find Full Text PDFNuclear cardiology has not witnessed development of new tracers or hardware for many years. Hence there is a need for the development of improvised techniques. Dynamic cardiac single photon emission computed tomography (SPECT) is one such technique that has a potential to overcome the limitations of conventional myocardial SPECT including the absolute quantification of blood flow.
View Article and Find Full Text PDFObjective: Although different methods have been suggested on reducing salivary gland radiation after radioiodine administration, an effective preventive or therapeutic measure is still up for debate. The aim of this study was to evaluate the effect of pilocarpine, as a sialagogue drug on the radioiodine content of the salivary gland, and radioiodine-induced symptoms of salivary gland dysfunction.
Patients And Methods: Patients who were referred for radioiodine therapy were randomized into pilocarpine and placebo groups.
Radioiodine therapy is known as the most effective treatment of differentiated thyroid carcinoma (DTC) to ablate remnant thyroid tissue after surgery. In patients with DTC treated with radioiodine, internal radiation dosimetry of radioiodine is useful for radiation risk assessment. The aim of this study is to describe a method to estimate the absorbed dose to the blood using medical internal radiation dosimetry methods.
View Article and Find Full Text PDFObjective: Gated blood po ol single photon emission computed tomography (GBPS) offers the possibility of obtaining additional functional information from blood pool studies, including evaluation of left and right ventricular function simultaneously. The calculation of ventricular volumes based on the identification of the endocardial surface would be influenced by the spatial resolution in the reconstructed images. This study was performed to evaluate the effect of different filters on the right ventricular function.
View Article and Find Full Text PDF