Publications by authors named "Seyed Javad Moghaddam"

Article Synopsis
  • Researchers found that the bacteria in our guts, called the gut microbiome, can affect how lung cancer develops and how well treatment works.
  • In experiments with mice, losing a certain protein made the gut bacteria less diverse and increased inflammation, which can help tumors grow.
  • They also noticed that lung cancer patients with more of a specific type of bacteria in their guts responded worse to certain cancer treatments, suggesting that gut bacteria might be important for cancer therapy.
View Article and Find Full Text PDF

Despite significant advances in precision treatments and immunotherapy, lung cancer is the most common cause of cancer death worldwide. To reduce incidence and improve survival rates, a deeper understanding of lung premalignancy and the multistep process of tumorigenesis is essential, allowing timely and effective intervention before cancer development. To summarize existing information, identify knowledge gaps, formulate research questions, prioritize potential research topics, and propose strategies for future investigations into the premalignant progression in the lung.

View Article and Find Full Text PDF

Understanding the cellular processes that underlie early lung adenocarcinoma (LUAD) development is needed to devise intervention strategies. Here we studied 246,102 single epithelial cells from 16 early-stage LUADs and 47 matched normal lung samples. Epithelial cells comprised diverse normal and cancer cell states, and diversity among cancer cells was strongly linked to LUAD-specific oncogenic drivers.

View Article and Find Full Text PDF

Introduction: Toll-like receptors (TLRs) are an extensive group of proteins involved in host defense processes that express themselves upon the increased production of endogenous damage-associated molecular patterns (DAMPs) and pathogen-associated molecular patterns (PAMPs) due to the constant contact that airway epithelium may have with pathogenic foreign antigens. We have previously shown that COPD-like airway inflammation induced by exposure to an aerosolized lysate of nontypeable (NTHi) promotes tumorigenesis in a K-ras mutant mouse model of lung cancer, CCSP/LSL-K-ras (CC-LR) mouse.

Methods: In the present study, we have dissected the role of TLRs in this process by knocking out TLR2, 4, and 9 and analyzing how these deletions affect the promoting effect of COPD-like airway inflammation on K-ras-driven lung adenocarcinoma.

View Article and Find Full Text PDF

mutations are among the most common oncogenic mutations in human cancers. Among mutations, KRAS has the highest frequency and is present in almost 30% of non-small-cell lung cancer (NSCLC) patients. Lung cancer is the number one cause of mortality among cancers as a consequence of outrageous aggressiveness and late diagnosis.

View Article and Find Full Text PDF

Purpose: Patients with advanced non-small cell lung cancer (NSCLC) harboring activating EGFR mutations are initially responsive to tyrosine kinase inhibitors (TKI). However, therapeutic resistance eventually emerges, often via secondary EGFR mutations or EGFR-independent mechanisms such as epithelial-to-mesenchymal transition. Treatment options after EGFR-TKI resistance are limited as anti-PD-1/PD-L1 inhibitors typically display minimal benefit.

View Article and Find Full Text PDF

Microbial dysbiosis has emerged as a modulator of oncogenesis and response to therapy, particularly in lung cancer. Here, we investigate the evolution of the gut and lung microbiomes following exposure to a tobacco carcinogen. We performed 16S rRNA-Seq of fecal and lung samples collected prior to and at several timepoints following (nicotine-specific nitrosamine ketone/NNK) exposure in mice that were previously shown to exhibit accelerated lung adenocarcinoma (LUAD) development following NNK exposure.

View Article and Find Full Text PDF

K-ras-mutant lung adenocarcinoma (KM-LUAD) is associated with abysmal prognosis and is tightly linked to tumor-promoting inflammation. A human mAb, canakinumab, targeting the proinflammatory cytokine IL-1β, significantly decreased the risk of lung cancer in the Canakinumab Anti-inflammatory Thrombosis Outcomes Study. Interestingly, we found high levels of IL-1β in the lungs of mice with K-rasG12D-mutant tumors (CC-LR mice).

View Article and Find Full Text PDF

Worldwide, lung cancer, particularly K-ras mutant lung adenocarcinoma (KM-LUAD), is the leading cause of cancer mortality because of its high incidence and low cure rate. To treat and prevent KM-LUAD, there is an urgent unmet need for alternative strategies targeting downstream effectors of K-ras and/or its cooperating pathways. Tumor-promoting inflammation, an enabling hallmark of cancer, strongly participates in the development and progression of KM-LUAD.

View Article and Find Full Text PDF

Bioactive molecule library screening may empirically identify effective combination therapies, but molecular mechanisms underlying favorable drug-drug interactions often remain unclear, precluding further rational design. In the absence of an accepted systems theory to interrogate synergistic responses, we introduce Omics-Based Interaction Framework (OBIF) to reveal molecular drivers of synergy through integration of statistical and biological interactions in synergistic biological responses. OBIF performs full factorial analysis of feature expression data from single versus dual exposures to identify molecular clusters that reveal synergy-mediating pathways, functions and regulators.

View Article and Find Full Text PDF

Lung cancer is the second most common cancers in the world and remains as the cancer with the highest incidence of death (Siegel et al. CA Cancer J Clin 71(1):7-33, 2021). K-RAS mutation is one of the most common mutations in non-small-cell lung cancer (NSCLC), encompassing 15-30% of lung adenocarcinomas (Cancer Genome Atlas Research Network.

View Article and Find Full Text PDF

Little is known of the geospatial architecture of individual cell populations in lung adenocarcinoma (LUAD) evolution. Here, we perform single-cell RNA sequencing of 186,916 cells from five early-stage LUADs and 14 multiregion normal lung tissues of defined spatial proximities from the tumors. We show that cellular lineages, states, and transcriptomic features geospatially evolve across normal regions to LUADs.

View Article and Find Full Text PDF

The novel coronavirus SARS-CoV-2 is the causative agent of the COVID-19 pandemic. Severely symptomatic COVID-19 is associated with lung inflammation, pneumonia, and respiratory failure, thereby raising concerns of elevated risk of COVID-19-associated mortality among lung cancer patients. Angiotensin-converting enzyme 2 (ACE2) is the major receptor for SARS-CoV-2 entry into lung cells.

View Article and Find Full Text PDF

Early pathogenesis of lung adenocarcinoma (LUAD) remains largely unknown. We found that, relative to wild-type littermates, the innate immunomodulator (lipocalin-2) was increased in normal airways from mice with knockout of the airway lineage gene () and that are prone to developing inflammation and LUAD. Yet, the role of LCN2 in lung inflammation and LUAD is poorly understood.

View Article and Find Full Text PDF

K-ras mutant lung adenocarcinoma (LUAD) is the most common type of lung cancer, displays abysmal prognosis and is tightly linked to tumor-promoting inflammation, which is increasingly recognized as a target for therapeutic intervention. We have recently shown a gender-specific role for epithelial Stat3 signaling in the pathogenesis of K-ras mutant LUAD. The absence of epithelial Stat3 in male K-ras mutant mice (LR/Stat3Δ/Δ mice) promoted tumorigenesis and induced a nuclear factor-kappaB (NF-κB)-driven pro-tumor immune response while reducing tumorigenesis and enhancing anti-tumor immunity in female counterparts.

View Article and Find Full Text PDF

Kirsten rat sarcoma viral oncogene (K-ras) is a well-documented, frequently mutated gene in lung cancer. Since K-ras regulates numerous signaling pathways related to cell survival and proliferation, mutations in this gene are powerful drivers of tumorigenesis and confer prodigious survival advantages to developing tumors. These malignant cells dramatically alter their local tissue environment and in the process recruit a powerful ally: inflammation.

View Article and Find Full Text PDF

Lung adenocarcinomas (LUADs) with mutations in the K-ras oncogene display dismal prognosis. Proinflammatory and immunomodulatory events that drive development of K-ras mutant LUAD are poorly understood. Here, we develop a lung epithelial specific K-ras mutant/Stat3 conditional knockout (LR/Stat3) mouse model.

View Article and Find Full Text PDF

Chronic obstructive pulmonary disease (COPD), an inflammatory disease of the lung, is an independent risk factor for lung cancer. Lung tissues obtained from human smokers with COPD and lung cancer demonstrate hypoxia and up-regulated hypoxia inducible factor-1 (HIF-1). HIF-1 activation is the central mechanism for controlling the cellular response to hypoxia during inflammation and tumor development.

View Article and Find Full Text PDF

With more than 150,000 deaths per year in the US alone, lung cancer has the highest number of deaths for any cancer. These poor outcomes reflect a lack of treatment for the most common form of lung cancer, non-small cell lung carcinoma (NSCLC). Lung adenocarcinoma (ADC) is the most prevalent subtype of NSCLC, with the main oncogenic drivers being KRAS and epidermal growth factor receptor (EGFR).

View Article and Find Full Text PDF

Somatic mutations are the most common oncogenic variants in lung cancer and are associated with poor prognosis. Using a -induced lung cancer mouse model, CC-LR, we previously showed a role for inflammation in lung tumorigenesis through activation of the NF-κB pathway, along with induction of interleukin 6 (IL6) and an IL17-producing CD4 T-helper cell response. IL22 is an effector molecule secreted by CD4 and γδ T cells that we previously found to be expressed in CC-LR mice.

View Article and Find Full Text PDF

Objectives: Lung cancer is the leading cause of cancer related deaths worldwide and mutation activating KRAS is one of the most frequent mutations found in lung adenocarcinoma. Identifying regulators of KRAS may aid in the development of therapies to treat this disease. The mitogen-induced gene 6, MIG-6, is a small adaptor protein modulating signaling in cells to regulate the growth and differentiation in multiple tissues.

View Article and Find Full Text PDF

Several promising chemopreventive agents have for lung cancer emerged in preclinical models and in retrospective trials. These agents have been shown to modulate pathways altered in carcinogenesis and reduce markers of carcinogenesis in animal and cell culture models. Cancer-prone transgenic mice with oncogenic Kras expressed in the airway epithelium (Ccsp ; Kras ) were raised on diets compounded with myo-inositol.

View Article and Find Full Text PDF