Publications by authors named "Seyed Hossein Mamanpush"

Wind turbine blades (WTB) mechanically recycled and used as a feedstock for thermoplastic composites. Physical properties (water sorption (WA), Thickness swelling (TS)) dataset of composites made from recycled wind turbine blades presented. Dataset also presented the influence of resin level, mill screen size and coupling agents on the physical properties of composites (Mamanpush et al.

View Article and Find Full Text PDF

The wind turbine blades (WTB) that face end-of-life was first mechanically milled and classified through a range of varying screen sizes. We then blended this with high density polyethylene (HDPE) thermoplastic resin and extruded it to a profiled composite. We determined the influence of refined particle size, resin content and coupling agents (maleic anhydride polyethylene (MAPE) and methacryloxypropyltriethoxysilane (Silane)) on the mechanical and CLTE properties of recycled composites (Mamanpush et al.

View Article and Find Full Text PDF

Wind turbine blades that face end-of-life recycled mechanically. The recycled material was first comminuted via a hammer-mill through a range of varying screen sizes, resinated and compressed to a final thickness to manufacture second generation composites fabricated using recycled wind turbine material and a polyurethane adhesive. Physical properties (water sorption (WA), Thickness swelling (TS)) dataset of composites made from recycled wind turbine blades presented.

View Article and Find Full Text PDF

Wind turbine blades that face end-of-life recycled mechanically. The recycled material was first comminuted via a hammer-mill through a range of varying screen sizes, resonated (polymeric Methylene diphenyl isocyanate (pMDI)) and then hand-formed and hot pressed. The hot press temperature and time were set as 138 °C and 5 min accordingly, typical for pMDI composite processing.

View Article and Find Full Text PDF

With an increase in renewable wind energy via turbines, an underlying problem of the turbine blade disposal is looming in many areas of the world. These wind turbine blades are predominately a mixture of glass fiber composites (GFCs) and wood and currently have not found an economically viable recycling pathway. This work investigates a series of second generation composites fabricated using recycled wind turbine material and a polyurethane adhesive.

View Article and Find Full Text PDF