Publications by authors named "Seyed Hossein Helalat"

Protein-based encapsulin nanocompartments, known for their well-defined structures and versatile functionalities, present promising opportunities in the fields of biotechnology and nanomedicine. In this investigation, we effectively developed a sortase A-mediated protein ligation system in to site-specifically attach target proteins to encapsulin, both internally and on its surfaces without any further steps. We explored the potential applications of fusing sortase enzyme and a protease for post-translational ligation of encapsulin to a green fluorescent protein and anti-CD3 scFv.

View Article and Find Full Text PDF

There has been an increasing demand for simultaneous detection of multiple analytes in one sample. Microbead-based platforms have been developed for multiplexed assays. However, most of the microbeads are made of non-biodegradable synthetic polymers, leading to environmental and human health concerns.

View Article and Find Full Text PDF

Nanoparticle synthesis on microfluidic platforms provides excellent reproducibility and control over bulk synthesis. While there have been plenty of platforms for producing nanoparticles (NPs) with controlled physicochemical properties, such platforms often operate in a narrow range of predefined flow rates. The flow rate limitation restricts either up-scalability for industrial production or down-scalability for exploratory research use.

View Article and Find Full Text PDF

After the development of portable glucose biosensor, challenges have remained to fabricate more portable devices for sensitive and reproducible detection of other biomarkers. Here, we fabricated a hand-held device for the quantification of carcinoembryonic antigen (CEA) or any other biomarkers based on electrochemiluminescence (ECL) using a bipolar electrode (BPE). The detection mechanism was based on a sandwich assay composed of a capture antibody and a secondary antibody conjugated with a robust ECL reporter.

View Article and Find Full Text PDF

Recombinase polymerase amplification (RPA) is one of the most promising diagnostic methods for pathogen detection, owing to the simplified isothermal amplification technique. Using one-step digital reverse transcription RPA (dRT-RPA) to detect viral RNA provides a fast diagnosis and absolute quantification. Here, we present a chip that purifies, digitalizes, and detects viral RNA of SARS-CoV-2 in a fully automated and sensitive manner.

View Article and Find Full Text PDF

Background: The objective of this work was to engineer Deinococcus radiodurans R1 as a microbial cell factory for the production of pinene, a monoterpene molecule prominently used for the production of fragrances, pharmaceutical products, and jet engine biofuels. Our objective was to produce pinene from glycerol, an abundant by-product of various industries.

Results: To enable pinene production in D.

View Article and Find Full Text PDF