The combination of two spectrometers in dual-laser Raman devices without the need for moving parts represents a significant advancement. This study focuses on design and fabrication of a dual spectrometer with no moving components, allowing data to be gathered using a single detector. This instrument consists of two Czerny-Turner optical arrangements which is symmetrically merged.
View Article and Find Full Text PDFDuring the past decade, ever-increasing electromagnetic pollution has excited a global concern. A sustainable resource, facile experimental scenario, fascinating reflection loss (RL), and broad efficient bandwidth are the substantial factors that intrigue researchers. This research led to the achievement of a brilliant microwave-absorbing material by treating pampas as biomass.
View Article and Find Full Text PDFIn this study, the deep learning algorithm of Convolutional Neural Network long short-term memory (CNN-LSTM) is used to classify various jewelry rocks such as agate, turquoise, calcites, and azure from various historical periods and styles related to Shahr-e Sokhteh. Here, the CNN-LSTM architecture includes utilizing CNN layers for the extraction of features from input data mixed with LSTMs for supporting sequence forecasting. It should be mentioned that interpretable deep learning-assisted laser induced breakdown spectroscopy helped achieve excellent performance.
View Article and Find Full Text PDFIn this study, a self-healing hydrogel was prepared that is transparent to visible (Vis) light while absorbing ultraviolet (UV), infrared (IR), and microwave. The optothermal features of the hydrogel were explored by monitoring temperature using an IR thermometer under an IR source. The hydrogel was synthesized using sodium tetraborate decahydrate (borax) and polyvinyl alcohol (PVA) as raw materials based on a facile thermal route.
View Article and Find Full Text PDFBiomass-derived materials have recently received considerable attention as lightweight, low-cost, and green microwave absorbers. On the other hand, sulfide nanostructures due to their narrow band gaps have demonstrated significant microwave characteristics. In this research, carbon microtubes were fabricated using a biowaste and then functionalized by a novel complementary solvothermal and sonochemistry method.
View Article and Find Full Text PDFThe present work is a novel in vitro study that evaluated the possibility of diagnosing neoplastic from nonneoplastic gastric tissues using spark discharge assisted laser induced breakdown spectroscopy (SD-LIBS) method. In these experiments, the low energy laser pulses ablated a tiny amount of tissue surface leading to plasma formation. Then, a spark discharge was applied to plasma in order to intensify the plasma radiation.
View Article and Find Full Text PDFMultilayer hyperbolic metamaterials (HMMs) are highly anisotropic media consisting of alternating metal and dielectric layers with their electromagnetic properties defined by the effective medium approximation (EMA). EMA is generally applied for a large number of subwavelength unit cells or periods of a multilayer HMM. However, in practice, the number of periods is limited.
View Article and Find Full Text PDFIntroduction: In this study, laser induced breakdown spectroscopy (LIBS) is used for qualitative analysis of healthy and carious teeth. The technique of laser ablation is receiving increasing attention for applications in dentistry, specifically for the treatment of teeth such as drilling of micro-holes and plaque removal.
Methods: A quality-switched (Q-switched) Neodymium-Doped Yttrium Aluminium Garnet (Nd:YAG) laser operating at wavelength of 1064 nm, pulse energy of 90 mJ/pulse, repetition rate of 2Hz and pulse duration of 6 ns was used in this analysis.
In the laser drilling of teeth, a microplasma is generated which may be utilized for elemental analysis of ablated tissue via a laser-induced breakdown spectroscopy (LIBS) technique. In this study, LIBS is used to investigate the possibility of discrimination of healthy and carious tooth tissues. This possibility is examined using multivariate statistical analysis called partial least square discriminant analysis (PLS-DA) based on atomic and ionic emission lines of teeth LIBS spectra belonging to P, Ca, Mg, Zn, K, Sr, C, Na, H, and O elements.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) is applied to investigate the effect of diabetes mellitus (DM) on the elemental composition of fingernails. Measurements are carried out on 85 fingernail clippings including 51 diabetic and 34 control subjects. An auto-focus system has been designed and used in experiments to improve the repeatability of LIBS measurements.
View Article and Find Full Text PDFLaser-induced breakdown spectroscopy (LIBS) is applied to analyze human fingernails using nanosecond laser pulses. Measurements on 45 nail samples are carried out and 14 key species are identified. The elements detected with the present system are: Al, C, Ca, Fe, H, K, Mg, N, Na, O, Si, Sr, Ti as well as CN molecule.
View Article and Find Full Text PDF