Publications by authors named "Seyed Ammar Haeri"

This paper presents the application of solar energy as a renewable resource in gel electromembrane extraction (G-EME). The extraction driving force (electrical field) generated from solar energy is stored through photovoltaic panels and significantly contributes to reducing the emission of greenhouse gasses. Moreover, the replacement of the polypropylene membrane and organic extracting solvents with biodegradable agarose membrane and the aqueous extracting solutions makes the presented approach compatible with the principles of green chemistry.

View Article and Find Full Text PDF

Two modes of electromembrane extraction (EME) were evaluated in this work, one using deep eutectic solvents (DESs) as liquid membrane, and another was gel electromembrane extraction (G-EME) based on solid agarose membrane. Both EME modes have eliminated organic solvents and are recognized as green strategies. Unlike classic EME in which polypropylene membrane and organic extracting solvents play an essential role in the extraction process, new modes of EME are based on biodegradable membranes and aqueous extracting solutions.

View Article and Find Full Text PDF

We here present an efficient approach for the tandem extraction of psychotropic drugs using biodegradable materials. In this regard, gel electromembrane extraction (G-EME) was combined with the emulsification-based microextraction (ME) technique by rhamnolipid bioaggregates as a green extraction approach. The tandem extraction technique consists of two stages: (i) extraction of psychotropic drugs from human urine samples to the acceptor phase situated on the other side of the agarose gel membrane, and (ii) transfer of analytes from the acceptor phase into a colloidal phase of rhamnolipid biosurfactants.

View Article and Find Full Text PDF

In the present investigation, extraction and preconcentration of methamphetamine in human urine samples was carried out using a novel bio-dispersive liquid liquid microextraction (Bio-DLLME) technique coupled with magnetic solid phase extraction (MSPE). Bio-DLLME is a kind of microextraction technique based nano-materials which have potential capabilities in many application fields. Bio-DLLME is based on the use of a binary part system consisting of methanol and nano rhaminolipid biosurfactant.

View Article and Find Full Text PDF

In this paper, biosorption-based dispersive liquid-liquid microextraction (BioDLLME) in combination with magnetic solid-phase extraction (MSPE) has been developed as a sample pretreatment method with high enrichment factor for the sensitive determination of ibuprofen in water samples. At first, magnetic Fe O /polypyrrole nanoparticles were synthesized and employed as sorbent for the MSPE of ibuprofen. After the elution of the desired compound from the sorbent by using methanol, BioDLLME technique was performed on the obtained solution.

View Article and Find Full Text PDF

In this study, biosorption based dispersive liquid liquid microextraction (Bio-DLLME) has been developed as a new method for the extraction of bisphenol A (BPA) from water samples. In this technique, the BPA is extracted into a stable cloudy phase. The colloidal phase is composed of micro-particles made from rhaminolipid biosurfactant and methanol, which dispersed in the water samples and facilitated the breakdown of analyte matrix bonds and provided high extraction yields.

View Article and Find Full Text PDF

We describe a rapid and simple microextraction of atrazine from water samples. This method is based on the use of magnetic nanoparticles as sorbents and bioaggregates that are applied to the extraction and preconcentration of atrazine. The resulting magnetic nanoparticles possess a fast adsorption kinetics and high adsorption capacity.

View Article and Find Full Text PDF