Naunyn Schmiedebergs Arch Pharmacol
August 2024
Hepatocellular carcinoma (HCC) represents one of the most common malignant tumors worldwide. Due to the limited number of available drugs and their side effects, the development of new chemotherapeutic strategies for HCC treatment has become increasingly important. This study is aimed at investigating whether diffractaic acid (DA), one of the secondary metabolites of lichen, exhibits a potential anticancer effect on HepG2 cells and whether its anticancer effect is mediated by inhibition of thioredoxin reductase 1 (TRXR1), which is a target of chemotherapeutic strategies due to overexpression in tumor cells including HCC.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
March 2024
Cervical cancer is among the most frequently observed cancer types in females. New therapeutic targets are needed because of the side impacts of existing cancer drugs and the inadequacy of treatment methods. Thioredoxin reductase 1 (TrxR1) is often overexpressed in many cancer cells, and targeting TrxR1 has become an attractive target for cancer therapy.
View Article and Find Full Text PDFLung cancer is the leading cause of cancer-related deaths all over the world. Therefore, it has gained importance in the development of new chemotherapeutic strategies to identify anticancer agents with low side effects, reliable, high anticancer potential, and specific to lung cancer cells. Thioredoxin reductase 1 (TrxR1) is an important therapeutic target for lung cancer treatment because of its overexpression in tumor cells.
View Article and Find Full Text PDFThioredoxin reductase 1 (TrxR1) has emerged as an important target for anticancer drug development due to its overexpression in many human tumors including breast cancer. Due to the serious side effects of currently used commercial anticancer drugs, new natural compounds with very few side effects and high efficacy are of great importance in cancer treatment. Lichen secondary metabolites, known as natural compounds, have diverse biological properties, including antioxidant and anticancer activities.
View Article and Find Full Text PDFAims: It was aimed to investigate the thioredoxin reductase 1 (TrxR1)-targeted anticancer effect of vulpinic (VA) and lecanoric (LA) acids, which are lichen secondary metabolites, on breast cancer MCF-7 and MDA-MB-453 cell lines, and to compare the effectiveness of this potential effect against commercial chemotherapeutic drugs carboplatin and docetaxel.
Main Methods: The anticancer effects of both lichen metabolites were evaluated by XTT, flow cytometry analysis, cell scratch, and transwell migration assays. Apoptotic results were also confirmed by qPCR and western blot.
Hepcidin (HAMP), an iron regulatory hormone synthesized by liver hepatocytes, works together with ferritin (FTH) and ferroportin (FPN) in regulating the storage, transport, and utilization of iron in the cell. Epigenetic mechanisms, especially acetylation, also play an important role in the regulation of iron metabolism. However, a target protein has not been mentioned yet.
View Article and Find Full Text PDFBreast cancer represents one of the most frequently encountered cancer types among women worldwide. Thioredoxin reductase 1 (TrxR1) is a therapeutic target for breast cancer therapy due to its overexpression in tumor cells. The current research aims to determine the anticancer effect of diffractaic acid, a lichen acid, in breast cancer, and research whether the anticancer effect of diffractaic acid occurs through TrxR1 targeting.
View Article and Find Full Text PDFDespite the fact that iron represents a crucial element for the catalysis of many metabolic reactions, its accumulation in the cell leads to the production of reactive oxygen species (ROS), provoking pathological conditions such as cancer, cardiovascular diseases, diabetes, neurodegenerative diseases, and fertility. Thus, ROS are neutralized by the enzymatic antioxidant system for the purpose of protecting cells against any damage. Iron is a potential risk factor for male fertility.
View Article and Find Full Text PDFIron is an indispensable element for vital activities in almost all living organisms. It is also a cofactor for many proteins, enzymes, and other essential complex biochemical processes. Therefore, iron trafficking is firmly regulated by Hepcidin (Hamp), which is regarded as the marker for iron accumulation.
View Article and Find Full Text PDF