We examine the theoretical motivations for long-lived particle (LLP) signals at the LHC in a comprehensive survey of standard model (SM) extensions. LLPs are a common prediction of a wide range of theories that address unsolved fundamental mysteries such as naturalness, dark matter, baryogenesis and neutrino masses, and represent a natural and generic possibility for physics beyond the SM (BSM). In most cases the LLP lifetime can be treated as a free parameter from the [Formula: see text]m scale up to the Big Bang Nucleosynthesis limit of [Formula: see text] m.
View Article and Find Full Text PDFIf the strong coupling is promoted to a dynamical field-dependent quantity, it is possible that the strong force looked very different in the early Universe. We consider a scenario in which the dynamics is such that QCD confines at high temperatures with a large dynamical scale, relaxing back to ∼1 GeV before big bang nucleosynthesis. We discuss the cosmological implications and explore potential applications, including fleshing out a new mechanism for baryogenesis which opens up if QCD confines before the electroweak phase transition of the standard model.
View Article and Find Full Text PDFWe show that, in U(1)_{R}-symmetric supersymmetric models, the bino and its Dirac partner (the singlino) can play the role of right-handed neutrinos and generate the neutrino masses and mixing, without the need for traditional bilinear or trilinear R-parity violating operators. The two particles form a pseudo-Dirac pair, the "biνo." An inverse seesaw texture is generated for the neutrino-biνo sector, and the lightest neutrino is predicted to be massless.
View Article and Find Full Text PDF