Background: Chemotherapeutic drug resistance remains a clinical obstacle in cancer management. Drug-resistant cancer cells usually exhibit cross-resistance to ionizing radiation, which has devastating consequences for patients. With a better understanding of the molecular mechanisms, it will be possible to develop strategies to overcome this cross-resistance and to increase therapeutic sensitivity.
View Article and Find Full Text PDFA rapid and simple gas chromatography-mass spectrometry (GC-MS) method was developed and validated to identify and quantify synthetic cannabinoids in the materials seized during drug trafficking. Accuracy and reproducibility of the method were improved by using deuterated JWH-018 and JWH-073 as internal standards. Validation results of the GC-MS method showed that it was suitable for simultaneous qualitative and quantitative analyses of synthetic cannabinoids, and we analyzed synthetic cannabinoids in seized materials using the validated GC-MS method.
View Article and Find Full Text PDFSome methamphetamine (MA) crystals contain pharmaceutical impurities. They often come from the co-ingredients of cold drugs used for extracting ephedrine or pseudoephedrine. Though these impurities are not so commonly encountered, they reflect the trends in precursor chemicals and manufacturing sources.
View Article and Find Full Text PDFBoth natural and synthetic cannabinoids have been shown to suppress the growth of tumor cells in culture and in animal models by affecting key signaling pathways including angiogenesis, a pivotal step in tumor growth, invasion, and metastasis. In our search for cannabinoid-like anticancer agents devoid of psychoactive side effects, we synthesized and evaluated the anti-angiogenic effects of a novel series of hexahydrocannabinol analogs. Among these, two analogs LYR-7 [(9S)-3,6,6,9-tetramethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-1-ol] and LYR-8 [(1-((9S)-1-hydroxy-6,6,9-trimethyl-6a,7,8,9,10,10a-hexahydro-6H-benzo[c]chromen-2-yl)ethanone)] were selected based on their anti-angiogenic activity and lack of binding affinity for cannabinoid receptors.
View Article and Find Full Text PDF