Single-cell MALDI mass spectrometry imaging (MSI) of lipids and metabolites >200 Da has recently come to the forefront of biomedical research and chemical biology. However, cell-targeting and metabolome-preserving methods for analysis of low mass, hydrophilic metabolites (<200 Da) in large cell populations are lacking. Here, the PRISM-MS (PRescan Imaging for Small Molecule - Mass Spectrometry) mass-guided MSI workflow is presented, which enables space-efficient single cell lipid and metabolite analysis.
View Article and Find Full Text PDFMacrophages exhibit diverse phenotypes and respond flexibly to environmental cues through metabolic remodeling. In this study, we present a comprehensive multi-omics dataset integrating intra- and extracellular metabolomes with transcriptomic data to investigate the metabolic impact on human macrophage function. Our analysis establishes a metabolite-gene correlation network that characterizes macrophage activation.
View Article and Find Full Text PDFUnlabelled: An in-depth multiomic molecular characterization of PARP inhibitors revealed a distinct poly-pharmacology of niraparib (Zejula) mediated by its interaction with lanosterol synthase (LSS), which is not observed with other PARP inhibitors. Niraparib, in a similar way to the LSS inhibitor Ro-48-8071, induced activation of the 24,25-epoxysterol shunt pathway, which is a regulatory signaling branch of the cholesterol biosynthesis pathway. Interestingly, the combination of an LSS inhibitor with a PARP inhibitor that does not bind to LSS, such as olaparib, had an additive effect on killing cancer cells to levels comparable with niraparib as a single agent.
View Article and Find Full Text PDFMulti-omics analyses are used in microbiome studies to understand molecular changes in microbial communities exposed to different conditions. However, it is not always clear how much each omics data type contributes to our understanding and whether they are concordant with each other. Here, we map the molecular response of a synthetic community of 32 human gut bacteria to three non-antibiotic drugs by using five omics layers (16S rRNA gene profiling, metagenomics, metatranscriptomics, metaproteomics and metabolomics).
View Article and Find Full Text PDFPreviously, we reported, based on an untargeted metabolomics, carnitine derivatives are part of a mechanism to overcome impaired mitochondrial functioning triggered by an acyl-group overflow in CHO cells. In this study, we analyzed the cell-specific rates of 24 selected metabolites using two metrics: correlation coefficients and root-mean-square deviations (RMSDs) between glucose-fed versus glucose/lactic acid-fed cultures. The time-course profiles of acetylcarnitine, adipoylcarnitine, glutarylcarnitine, glutamate, and succinate exhibited significant negative correlations between the two culture conditions.
View Article and Find Full Text PDFCross-species comparison of drug responses at the organoid level could help to determine the human relevance of findings from animal studies. To this end, we first need to evaluate the in vitro to in vivo translatability of preclinical organoids. Here, we used 5-fluorouracil (5-FU) as an exemplar drug to test whether the in vivo gut response to this cytotoxicant was preserved in murine intestinal organoids.
View Article and Find Full Text PDFThe successful development of mammalian cell culture for the production of therapeutic antibodies is a resource-intensive and multistage process which requires the selection of high performing and stable cell lines at different scale-up stages. Accordingly, science-based approaches exploiting biological information, such as metabolomics, can support and accelerate the selection of promising cell lines to progress. In fact, the integration of dynamic biological information with process data can provide valuable insights on the cell physiological changes as a consequence of the cultivation process.
View Article and Find Full Text PDFTumor relapse from treatment-resistant cells (minimal residual disease, MRD) underlies most breast cancer-related deaths. Yet, the molecular characteristics defining their malignancy have largely remained elusive. Here, we integrated multi-omics data from a tractable organoid system with a metabolic modeling approach to uncover the metabolic and regulatory idiosyncrasies of the MRD.
View Article and Find Full Text PDFBacteria in the gut can modulate the availability and efficacy of therapeutic drugs. However, the systematic mapping of the interactions between drugs and bacteria has only started recently and the main underlying mechanism proposed is the chemical transformation of drugs by microorganisms (biotransformation). Here we investigated the depletion of 15 structurally diverse drugs by 25 representative strains of gut bacteria.
View Article and Find Full Text PDFAdjustments to CHO cell physiology were recently observed during implementation of a Raman spectroscopy-based glucose and lactate control strategy. To further understand how these cells, under monoclonal antibody (mAb) production conditions, utilized the extra lactic acid fed, we performed a comprehensive semi-quantitative and time-dependent analysis of the exometabolome. This study focused on the CHO cell's metabolic shift from the fifth day of culture.
View Article and Find Full Text PDF5-Fluorouracil (5-FU) is a widely used chemotherapeutical that induces acute toxicity in the small and large intestine of patients. Symptoms can be severe and lead to the interruption of cancer treatments. However, there is limited understanding of the molecular mechanisms underlying 5-FU-induced intestinal toxicity.
View Article and Find Full Text PDFBackground: Children with severe acute malnutrition (SAM) have inadequate levels of fatty acids (FAs) and limited capacity for enteral nutritional rehabilitation. We hypothesized that topical high-linoleate sunflower seed oil (SSO) would be effective adjunctive treatment for children with SAM.
Methods: This study tested a prespecified secondary endpoint of a randomized, controlled, unblinded clinical trial with 212 children with SAM aged 2 to 24 months in two strata (2 to < 6 months, 6 to 24 months in a 1:2 ratio) at Dhaka Hospital of icddr,b, Bangladesh between January 2016 and December 2017.
Fibrosis can affect any organ, resulting in the loss of tissue architecture and function with often life-threatening consequences. Pathologically, fibrosis is characterised by the expansion of connective tissue due to excessive deposition of extracellular matrix (ECM) proteins, including the fibrillar forms of collagen. A significant limitation for discovering cures for fibrosis is the availability of suitable human models and techniques to quantify mature fibrillar collagen deposition as close as possible to human physiological conditions.
View Article and Find Full Text PDFMonitoring drug-target interactions with methods such as the cellular thermal-shift assay (CETSA) is well established for simple cell systems but remains challenging in vivo. Here we introduce tissue thermal proteome profiling (tissue-TPP), which measures binding of small-molecule drugs to proteins in tissue samples from drug-treated animals by detecting changes in protein thermal stability using quantitative mass spectrometry. We report organ-specific, proteome-wide thermal stability maps and derive target profiles of the non-covalent histone deacetylase inhibitor panobinostat in rat liver, lung, kidney and spleen and of the B-Raf inhibitor vemurafenib in mouse testis.
View Article and Find Full Text PDFGenes encoding dodecin proteins are present in almost 20 % of archaeal and in more than 50 % of bacterial genomes. Archaeal dodecins bind riboflavin (vitamin B2), are thought to play a role in flavin homeostasis and possibly also help to protect cells from radical or oxygenic stress. Bacterial dodecins were found to bind riboflavin-5'-phosphate (also called flavin mononucleotide or FMN) and coenzyme A, but their physiological function remained unknown.
View Article and Find Full Text PDFThe endogenous metabolite itaconate has recently emerged as a regulator of macrophage function, but its precise mechanism of action remains poorly understood. Here we show that itaconate is required for the activation of the anti-inflammatory transcription factor Nrf2 (also known as NFE2L2) by lipopolysaccharide in mouse and human macrophages. We find that itaconate directly modifies proteins via alkylation of cysteine residues.
View Article and Find Full Text PDFDifferent immune activation states require distinct metabolic features and activities in immune cells. For instance, inhibition of fatty acid synthase (FASN), which catalyzes the synthesis of long-chain fatty acids, prevents the proinflammatory response in macrophages; however, the precise role of this enzyme in this response remains poorly defined. Consistent with previous studies, we found here that FASN is essential for lipopolysaccharide-induced, Toll-like receptor (TLR)-mediated macrophage activation.
View Article and Find Full Text PDFMany microorganisms live in communities and depend on metabolites secreted by fellow community members for survival. Yet our knowledge of interspecies metabolic dependencies is limited to few communities with small number of exchanged metabolites, and even less is known about cellular regulation facilitating metabolic exchange. Here we show how yeast enables growth of lactic acid bacteria through endogenous, multi-component, cross-feeding in a readily established community.
View Article and Find Full Text PDFIn recent years, the number of large-scale metabolomics studies on various cellular processes in different organisms has increased drastically. However, it remains a major challenge to perform a systematic identification of mechanistic regulatory events that mediate the observed changes in metabolite levels, due to complex interdependencies within metabolic networks. We present the metabolic network segmentation (MNS) algorithm, a probabilistic graphical modeling approach that enables genome-scale, automated prediction of regulated metabolic reactions from differential or serial metabolomics data.
View Article and Find Full Text PDFMetabolism is one of the best-understood cellular processes whose network topology of enzymatic reactions is determined by an organism's genome. The influence of genes on metabolite levels, however, remains largely unknown, particularly for the many genes encoding non-enzymatic proteins. Serendipitously, genomewide association studies explore the relationship between genetic variants and metabolite levels, but a comprehensive interaction network has remained elusive even for the simplest single-celled organisms.
View Article and Find Full Text PDFOur understanding of metabolism is limited by a lack of knowledge about the functions of many enzymes. Here, we develop a high-throughput mass spectrometry approach to comprehensively profile proteins for in vitro enzymatic activity. Overexpressed or purified proteins are incubated in a supplemented metabolome extract containing hundreds of biologically relevant candidate substrates, and accumulating and depleting metabolites are determined by nontargeted mass spectrometry.
View Article and Find Full Text PDFCells constantly adapt to unpredictably changing extracellular solute concentrations. A cornerstone of the cellular osmotic stress response is the metabolic supply of energy and building blocks to mount appropriate defenses. Yet, the extent to which osmotic stress impinges on the metabolic network remains largely unknown.
View Article and Find Full Text PDFOld age is associated with a progressive decline of mitochondrial function and changes in nuclear chromatin. However, little is known about how metabolic activity and epigenetic modifications change as organisms reach their midlife. Here, we assessed how cellular metabolism and protein acetylation change during early aging in Drosophila melanogaster.
View Article and Find Full Text PDFUnderstanding how the homeostasis of cellular size and composition is accomplished by different organisms is an outstanding challenge in biology. For exponentially growing Escherichia coli cells, it is long known that the size of cells exhibits a strong positive relation with their growth rates in different nutrient conditions. Here, we characterized cell sizes in a set of orthogonal growth limitations.
View Article and Find Full Text PDF