Hydroxyapatite (HAp) is the most well-known bioceramic and widely utilized in bone tissue regeneration. Hydroxyapatite is biocompatible and bioactive however, it lacks osteogenesis, angiogenesis, and antibacterial properties. In the current study, we synthesized and evaluated a novel nickel (Ni) and silver (Ag) codoped hydroxyapatite (HAp) in comparison to undoped HAp and individually doped HAp samples.
View Article and Find Full Text PDFLimitations associated with conventional bone substitutes such as autografts, increasing demand for bone grafts, and growing elderly population worldwide necessitate development of unique materials as bone graft substitutes. Bone tissue engineering (BTE) would ensure therapy advancement, efficiency, and cost-effective treatment modalities of bone defects. One way of engineering bone tissue scaffolds by mimicking natural bone tissue composed of organic and inorganic phases is to utilize polysaccharide-bioceramic hybrid composites.
View Article and Find Full Text PDFHydrodynamic cavitation (HC) is a phase change phenomenon, where energy release in a fluid occurs upon the collapse of bubbles, which form due to the low local pressures. During recent years, due to advances in lab-on-a-chip technologies, HC-on-a-chip (HCOC) and its potential applications have attracted considerable interest. Microfluidic devices enable the performance of controlled experiments by enabling spatial control over the cavitation process and by precisely monitoring its evolution.
View Article and Find Full Text PDFBone repair is a self-healing process. However, critical-sized bone defects need bone augmentation where bone tissue engineering plays vital role. Bone tissue Engineering (BTE) requires unique combinations of scaffolds, cells, and bio-signal molecules.
View Article and Find Full Text PDF