Radiation induces DNA and protein damage and free radical formation, effectively establishing cellular senescence in a variety of models. We demonstrate the effects of two known pleiotropic drugs following gamma radiation damage in neurosphere/cerebral organoid system based on human embryonic stem cells. mTORC1 repression by rapamycin prior to irradiation, or metabolic activation by minocycline after irradiation, partially rescues neuroepithelium integrity, neurite-growing capacity, ventricle formation and extracellular acidification rate as an integral measure of metabolic output.
View Article and Find Full Text PDFGenetic engineering of stem cells and their derivatives has the potential to enhance their regenerative capabilities. Here, dendrimer- and lipofection-based approaches were used for non-viral neurotrophin-3 (NT-3) over-expression in Schwann cells differentiated from skin precursors (SKP-SCs). A variety of dendrimers were first tested for transfection efficiency on HEK 293T cells, with PAMAMNH2 G4 found most effective and used subsequently for SKP-SCs transfection.
View Article and Find Full Text PDFThis study reports the use of a nonviral expression system based on polyamidoamine dendrimers for time-restricted neurotrophin overproduction in mesenchymal stem cells and skin precursor-derived Schwann cells. The dendrimers were used to deliver plasmids for brain-derived neurotrophic factor (BDNF) or neurotrophin-3 (NT-3) expression in both rodent and human stem cells, and the timelines of expression were studied. We have found that, despite the fact that transfection efficiencies and protein expression levels were comparable, dendrimer-driven expression in human mesenchymal stem cells was characterized by a more rapid decline compared to rodent cells.
View Article and Find Full Text PDFConditions of human BM and umbilical cord blood MSC in vitro differentiation in the hepatogenic direction were studied. Changes in cell morphology, phenotype, acquisition of the capacity to produce albumin and accumulate glycogen, express cytokeratin, alkaline phosphatase, and albumin mRNA indicated that BM and umbilical cord blood MSC differentiated in vitro into immature hepatocyte-like cells.
View Article and Find Full Text PDFExpression of transgenes in neurons and stromal/mesenchymal stem cells (MSC) can greatly enhance their therapeutic potential. In transfection experiments, we studied properties of linear and branched (dendrimers) polycations as transgene delivery vehicles. Linear polyethyleneimine transfected neurons, but was ineffective in MSC.
View Article and Find Full Text PDFWe report the adaptation of dendrimer-based nonviral expression system for ciliary neurotrophic factor (CNTF) overproduction in human mesenchymal stem cells (hMSCs) embedded into fibrin-based three-dimensional (3D) matrix. Time-restricted neurotrophin expression enables autologous adult stem cells for additional trophic support and increases their therapeutic potential in neuroregeneration applications. Polyamidoamine (PAMAM)-NH(2) dendrimers of fourth generation effectively provided virus-free delivery and expression of CNTF-internal ribosome entry site-green fluorescent protein cassette with a transfection efficiency in hMSCs over 11%.
View Article and Find Full Text PDFResearch concerning new targeting delivery systems for pharmacologically active molecules and genetic material is of great importance. The aim of the present study was to investigate the potential of fourth generation (P4) cationic phosphorus-containing dendrimers to bind fluorescent probe 8-anilino-1-naphthalenesulfonate (ANS), anti-neoplastic drug cisplatin, anti-HIV siRNA siP24 and its capability to deliver green fluorescent protein gene (pGFP) into cells. The interaction between P4 and ANS (as the model drug) was investigated.
View Article and Find Full Text PDFDendriplexes were characterized by ethidium bromide intercalation assay and their transfection efficiency was studied using HEK 293 cells and human mesenchymal stem cells. PAMAM G4 showed a higher transfection efficiency than PAMAM G3-G6, G4-OH, G4-25% or G4-50% dendrimers. Substitution of OH groups for the NH(2) surface groups rendered the dendrimer unable to form dendriplexes and to transfect cells.
View Article and Find Full Text PDFWe report the use of polyamidoamine (PAMAM-NH(2)) dendrimers along with other non-viral vehicles for the in vitro transfection of human bone marrow mesenchymal stem cells (hMSCs) and for engineering MSCs to secrete brain-derived neurotrophic factor (BDNF). Different generations of cationic polyamidoamine dendrimers (generations 3-6) were tested on HEK 293T cells. hMSCs were then transfected with PAMAM-NH(2) G4 dendrimers and Lipofectamine 2000, which elicited the expression of GFP reporter in around 6 and 20% of the cells, respectively.
View Article and Find Full Text PDF