The present research investigated the impact of reduced graphene oxide (rGO) addition on the semi-continuous anaerobic digestion of the organic fraction of municipal solid waste (OFMSW) in the range of 0.5-10 gVolatileSolid(VS)/Lday organic loading rates (OLR). Adding rGO enhanced the rate and yield of biomethane production, and the maximum biomethane increment rate was obtained as 110% at an OLR of 4.
View Article and Find Full Text PDFThe effects of graphite on the anaerobic digestion of food waste (FW), cow manure (CM) and its mixture (FW/CM) via batch experiments under mesophilic conditions have been investigated in this study. Maximum biogas production with graphite addition for FW + 1 g/L, CM + 1.5 g/L and FW/CM + 0.
View Article and Find Full Text PDFJ Environ Health Sci Eng
December 2013
The effects of various parameters on bromate reduction were tested using lab-scale batch reactors with sulfur based autotrophic and methanol based heterotrophic denitrification processes. The initial bromate (BrO3-) concentration of 100 and 500 μg/L was completely reduced and bromide (Br-) was produced stoichiometrically from bromate in all batch reactors. In all experiments, nitrate was completely reduced to below detection limit.
View Article and Find Full Text PDFA long-term performance of a packed-bed bioreactor containing sulfur and limestone was evaluated for the denitrification of drinking water. Autotrophic denitrification rate was limited by the slow dissolution rate of sulfur and limestone. Dissolution of limestone for alkalinity supplementation increased hardness due to release of Ca(2+).
View Article and Find Full Text PDFThe study demonstrates the potential of using unicellular cyanobacteria species, isolated from Kucukcekmece Lake, Turkey, for biological Iron removal from aqueous solutions. EC(50) at 96h was estimated to be 13.92 mg/L for Synechocystis sp.
View Article and Find Full Text PDFA three factor, three-level Box-Behnken experimental design combining with response surface modeling (RSM) and quadratic programming (QP) was employed for maximizing Pb(II) removal from aqueous solution by Antep pistachio (Pistacia vera L.) shells based on 17 different experimental data obtained in a lab-scale batch study. Three independent variables (initial pH of solution (pH(0)) ranging from 2.
View Article and Find Full Text PDFA three-layer artificial neural network (ANN) model was developed to predict the efficiency of Pb(II) ions removal from aqueous solution by Antep pistachio (Pistacia Vera L.) shells based on 66 experimental sets obtained in a laboratory batch study. The effect of operational parameters such as adsorbent dosage, initial concentration of Pb(II) ions, initial pH, operating temperature, and contact time were studied to optimise the conditions for maximum removal of Pb(II) ions.
View Article and Find Full Text PDF