Fibroblasts are the most common cell type in stroma and function in the support and repair of most tissues. Mouse embryonic fibroblasts (MEFs) are amenable to isolation and rapid growth in culture. MEFs are therefore widely used as a standard model for functional characterisation of gene knockouts, and can also be used in co-cultures, commonly to support embryonic stem cell cultures.
View Article and Find Full Text PDFThe tyrosine kinase receptor A (NTRK1/TrkA) is increasingly regarded as a therapeutic target in oncology. In breast cancer, TrkA contributes to metastasis but the clinicopathological significance remains unclear. In this study, TrkA expression was assessed via immunohistochemistry of 158 invasive ductal carcinomas (IDC), 158 invasive lobular carcinomas (ILC) and 50 ductal carcinomas in situ (DCIS).
View Article and Find Full Text PDFThe serine/threonine protein phosphatase 2A (PP2A) is a master regulator of the complex cellular signaling that occurs during all stages of mammalian development. PP2A is composed of a catalytic, a structural, and regulatory subunit, for which there are multiple isoforms. The association of specific regulatory subunits determines substrate specificity and localization of phosphatase activity, however, the precise role of each regulatory subunit in development is not known.
View Article and Find Full Text PDFBreast cancer is the most commonly diagnosed and the second leading cause of cancer-related mortality among women worldwide. miR-518f-5p has been shown to modulate the expression of the metastasis suppressor CD9 in prostate cancer. However, the role of miR-518f-5p and CD9 in breast cancer is unknown.
View Article and Find Full Text PDFThe neurotrophic tyrosine kinase receptor TrkA (NTRK1) and its ligand nerve growth factor (NGF) are emerging promoters of tumor progression. In lung cancer, drugs targeting TrkA are in clinical trials, but the clinicopathological significance of TrkA and NGF, as well as that of the precursor proNGF, the neurotrophin co-receptor p75 and the proneurotrophin co-receptor sortilin, remains unclear. In the present study, analysis of these proteins was conducted by immunohistochemistry and digital quantification in a series of 204 lung cancers of different histological subtypes versus 121 normal lung tissues.
View Article and Find Full Text PDFIn humans and FVB/N mice, loss of functional tetraspanin CD151 is associated with glomerular disease characterised by early onset proteinuria and ultrastructural thickening and splitting of the glomerular basement membrane (GBM). To gain insight into the molecular mechanisms associated with disease development, we characterised the glomerular gene expression profile at an early stage of disease progression in FVB/N Cd151 mice compared to Cd151 controls. This study identified 72 up-regulated and 183 down-regulated genes in FVB/N Cd151 compared to Cd151 glomeruli (p < 0.
View Article and Find Full Text PDFNeurotrophin receptors are emerging targets in oncology, but their clinicopathologic significance in thyroid cancer is unclear. In this study, the neurotrophin tyrosine receptor kinase TrkA (also called NTRK1), the common neurotrophin receptor p75, and the proneurotrophin receptor sortilin were analyzed with immunohistochemistry in a cohort of thyroid cancers (n = 128) and compared with adenomas and normal thyroid tissues (n = 62). TrkA was detected in 20% of thyroid cancers, compared with none of the benign samples (P = 0.
View Article and Find Full Text PDFBreast Cancer Res Treat
November 2017
Purpose: Protein phosphatase 2A (PP2A) is a family of serine/threonine phosphatases that regulate multiple cellular signalling pathways involved in proliferation, survival and apoptosis. PP2A inhibition occurs in many cancers and is considered a tumour suppressor. Deletion/downregulation of PP2A genes has been observed in breast tumours, but the functional role of PP2A subunit loss in breast cancer has not been investigated.
View Article and Find Full Text PDFInfiltration of the tumor microenvironment by nerve fibers is an understudied aspect of breast carcinogenesis. In this study, the presence of nerve fibers was investigated in a cohort of 369 primary breast cancers (ductal carcinomas in situ, invasive ductal and lobular carcinomas) by immunohistochemistry for the neuronal marker PGP9.5.
View Article and Find Full Text PDFThe neuronal membrane protein sortilin has been reported in a few cancer cell lines, but its expression and impact in human tumors is unclear. In this study, sortilin was analyzed by immunohistochemistry in a series of 318 clinically annotated breast cancers and 53 normal breast tissues. Sortilin was detected in epithelial cells, with increased levels in cancers, as compared to normal tissues (p = 0.
View Article and Find Full Text PDFRecent studies have revealed the essential role played by nerves in tumor progression. Nerves have been shown to infiltrate the tumor microenvironment and actively stimulate cancer cell growth and dissemination. This mechanism involves the release of neurotransmitters, such as catecholamines and acetylcholine, directly into the vicinity of cancer and stromal cells to activate corresponding membrane receptors.
View Article and Find Full Text PDFNerve infiltration is essential to prostate cancer progression, but the mechanism by which nerves are attracted to prostate tumors remains unknown. We report that the precursor of nerve growth factor (proNGF) is overexpressed in prostate cancer and involved in the ability of prostate cancer cells to induce axonogenesis. A series of 120 prostate cancer and benign prostate hyperplasia (BPH) samples were analyzed by IHC for proNGF.
View Article and Find Full Text PDFBackground: Tetraspanins are transmembrane proteins that serve as scaffolds for multiprotein complexes containing, for example, integrins, growth factor receptors and matrix metalloproteases, and modify their functions in cell adhesion, migration and transmembrane signaling. CD151 is part of the tetraspanin family and it forms tight complexes with β1 and β4 integrins, both of which have been shown to be required for tumorigenesis and/or metastasis in transgenic mouse models of breast cancer. High levels of the tetraspanin CD151 have been linked to poor patient outcome in several human cancers including breast cancer.
View Article and Find Full Text PDFThe members of the p130Cas (Cas) family are important scaffolding proteins that orchestrate cell adhesion, migration and invasiveness downstream of integrin adhesion receptors and receptor tyrosine kinases by recruiting enzymes and structural molecules. Shep1, BCAR3/AND-34 and NSP1 define a recently identified family of SH2 domain-containing proteins that constitutively bind Cas proteins through a Cdc25-type nucleotide exchange factor-like domain. To gain insight into the functional interplay between Shep1 and Cas in vivo, we have inactivated the Shep1 gene in the mouse through Cre-mediated deletion of the exon encoding the SH2 domain.
View Article and Find Full Text PDFAlterations in CD151 have been associated with primary glomerular disease in both humans and mice, implicating CD151 as a key component of the glomerular filtration barrier. CD151 belongs to the tetraspanin family and associates with cell-matrix adhesion complexes such as alpha3beta1-integrin. Here we show that Cd151-deficient mice develop severe kidney disease on an FVB background but are healthy on a B6 background, providing a new and unique tool for the identification of genes that modulate the onset of proteinuria.
View Article and Find Full Text PDFSHEP1, BCAR3 and NSP1 are the three members of a family of cytoplasmic proteins involved in cell adhesion/migration and antiestrogen resistance. All three proteins contain an SH2 domain and an exchange factor-like domain that binds both Ras GTPases and the scaffolding protein Cas. SHEP1, BCAR3 and NSP1 mRNAs are widely expressed in tissues, and SHEP1 and BCAR3 have multiple splice variants that differ in their 5' untranslated regions and in some cases the beginning of their coding regions.
View Article and Find Full Text PDFPodocytes are specialized epithelial cells covering the basement membrane of the glomerulus in the kidney. The molecular mechanisms underlying the role of podocytes in glomerular filtration are still largely unknown. We generated podocin-deficient (Nphs2-/-) mice to investigate the function of podocin, a protein expressed at the insertion of the slit diaphragm in podocytes and defective in a subset of patients with steroid-resistant nephrotic syndrome and focal and segmental glomerulosclerosis.
View Article and Find Full Text PDFPodocytes are specialized epithelial cells of the glomerulus in the kidney, which interconnect at the top of the glomerular basement membrane through the slit diaphragm, an adherens-like junction that plays a crucial role in the glomerular filtration process. Podocin, a plasma membrane anchored stomatin-like protein, is expressed in lipid rafts at the insertion of the slit diaphragm in podocytes. Mutations in NPHS2, the gene encoding podocin, are associated with inherited and sporadic cases of steroid-resistant nephrotic syndrome.
View Article and Find Full Text PDFWe recently cloned a novel gene, NPHS2, involved in autosomal recessive steroid-resistant nephrotic syndrome. This gene encodes a novel podocyte protein, podocin. Given its similarity with the stomatin family proteins, podocin is predicted to be an integral membrane protein with a single membrane domain forming a hairpin-like structure placing both N- and C-termini in the cytosol.
View Article and Find Full Text PDF