Inhibitory signaling is an emerging function of ITAM-bearing immunoreceptors in the maintenance of homeostasis. Monovalent targeting of the IgA Fc receptor (FcalphaRI or CD89) by anti-FcalphaRI Fab triggers potent inhibitory ITAM (ITAM(i)) signaling through the associated FcRgamma chain (FcalphaRI-FcRgamma ITAM(i)) that prevents IgG phagocytosis and IgE-mediated asthma. It is not known whether FcalphaRI-FcRgamma ITAM(i) signaling controls receptors that do not function through an ITAM and whether this inhibition requires Src homology protein 1 phosphatase.
View Article and Find Full Text PDFThe IgA Fc receptor (FcalphaRI) has dual proinflammatory and anti-inflammatory functions that are transmitted through the immunoreceptor tyrosine-based activation motifs (ITAMs) of the associated FcRgamma subunit. Whereas the involvement of FcalphaRI in inflammation is well documented, little is known of its anti-inflammatory mechanisms. Here we show that monomeric targeting of FcalphaRI by anti-FcalphaRI Fab or serum IgA triggers apoptosis in human monocytes, monocytic cell lines, and FcalphaRI+ transfectants.
View Article and Find Full Text PDFSerum IgA is considered a discrete housekeeper of the immune system with multiple anti-inflammatory functions, whereas IgA-immune complexes mediate inflammatory responses. Here, we identify FcalphaRI as a molecular device that determines the nature of IgA responses. In the absence of sustained aggregation, receptor targeting by serum IgA or anti-FcalphaRI Fab inhibits activating responses of heterologous FcgammaR or FcepsilonRI.
View Article and Find Full Text PDF