In the field of therapeutic antibody production, diversification of fed-batch strategies is flourishing in response to the market demand. All manufacturing approaches tend to follow the generally accepted dogma of increasing titer since it directly increases manufacturing output. While titer is influenced by the biomass (expressed as IVCD), the culture time and the cell-specific productivity (q), we changed independently each of these parameters to tune our process strategy towards adapted solutions to individual manufacturing needs.
View Article and Find Full Text PDFCell counting and viability assessment is an integral part of mammalian cell line development. While manual counting with a hemocytometer is still the gold standard method, its subjectivity and high labor intensity has resulted in its reduced use in favor of automated systems. In addition, some of these automated systems offer multiwell plate based high throughput cell count, which is an asset for biopharmaceutical companies generating hundreds of high-performance cell lines per year.
View Article and Find Full Text PDFAntibody phage display technology has supported the emergence of numerous therapeutic antibodies. The development of bispecific antibodies, a promising new frontier in antibody therapy, could be facilitated by new phage display approaches that enable pairs of antibodies to be co-selected based on co-engagement of their respective targets. We describe such an approach, making use of two complementary leucine zipper domains that heterodimerize with high affinity.
View Article and Find Full Text PDFBispecific antibodies enable unique therapeutic approaches but it remains a challenge to produce them at the industrial scale, and the modifications introduced to achieve bispecificity often have an impact on stability and risk of immunogenicity. Here we describe a fully human bispecific IgG devoid of any modification, which can be produced at the industrial scale, using a platform process. This format, referred to as a κλ-body, is assembled by co-expressing one heavy chain and two different light chains, one κ and one λ.
View Article and Find Full Text PDFAntibodies capable of targeting more than one antigen are envisioned to expand therapeutic efficacy in complex disease settings. Several strategies have been developed to achieve multiple targeting, including antibody mixtures and bispecific formats. In recent years, several dual- and pan-specific antibodies have been described and represent an alternative approach.
View Article and Find Full Text PDFDual-specific antibodies are characterized by an antigen-combining site mediating specific interactions with two different antigens. We have generated five dual-specific single chain variable fragments (scFv) that neutralize the activity of the two chemokines, CXCL9 and CXCL10, to bind to their receptor CXCR3. To better understand how these dual-specific scFvs bind these two chemokines that only share a 37% sequence identity, we mapped their epitopes on human CXCL9 and CXCL10 and identified serine 13 (Ser(13)) as a critical residue.
View Article and Find Full Text PDFChemokines are key regulators of leukocyte trafficking and play a crucial role under homeostatic and inflammatory conditions. Because chemokines are involved in multiple pathologies, they represent an attractive class of therapeutic targets. However, because of the redundancy of this system, neutralizing a single chemokine may be insufficient to achieve therapeutic benefit.
View Article and Find Full Text PDFMany research projects in life sciences require purified biologically active recombinant protein. In addition, different formats of a given protein may be needed at different steps of experimental studies. Thus, the number of protein variants to be expressed and purified in short periods of time can expand very quickly.
View Article and Find Full Text PDFChemokines are important mediators of the immune response that are responsible for the trafficking of immune cells between lymphoid organs and migration towards sites of inflammation.Using phage display selection and a functional screening approach, we have isolated a panel of single-chain fragment variable (scFv) capable of neutralizing the activity of the human chemokine CXCL10 (hCXCL10). One of the isolated scFv was weakly cross-reactive against another human chemokine CXCL9,but was unable to block its biological activity.
View Article and Find Full Text PDF