Although recent advances in breast cancer treatment regimes have improved patient prognosis, resistance to breast cancer therapies, such as radiotherapy, is still a major clinical challenge. In the current study, we have investigated the role of autocrine human GH (hGH) in resistance to ionising radiation (IR)-based therapy. Cell viability and total cell number assays demonstrated that autocrine hGH promoted cell regrowth in the mammary carcinoma cell lines, MDA-MB-435S and T47D, and the endometrial carcinoma cell line, RL95-2, following treatment with IR.
View Article and Find Full Text PDFDeregulated PAX5 expression has been associated with metastatic mammary carcinoma, although the precise role of PAX5 in cancer progression is unclear. Stable forced expression of PAX5alpha in the mammary carcinoma cell lines MCF-7 and MDA-MB-231 reduced cell cycle progression, cell survival, and anchorage-independent cell growth. In xenograft studies, forced expression of PAX5alpha was associated with a significant reduction in tumor volume.
View Article and Find Full Text PDFAccumulating literature implicates pathological angiogenesis and lymphangiogenesis as playing key roles in tumor progression. Autocrine human growth hormone (hGH) is a wild-type orthotopically expressed oncogene for the human mammary epithelial cell. Herein we demonstrate that autocrine hGH expression in the human mammary carcinoma cell line MCF-7 stimulated the survival, proliferation, migration, and invasion of a human microvascular endothelial cell line (HMEC-1).
View Article and Find Full Text PDF