Publications by authors named "Severine Diziain"

Nanoscale waveguides are basic building blocks of integrated optical devices. Especially, waveguides made from nonlinear optical materials, such as lithium niobate, allow access to a broad range of applications using second-order nonlinear frequency conversion processes. Based on a lithium niobate on insulator substrate, millimeter-long nanoscale waveguides were fabricated with widths as small as 200 nm.

View Article and Find Full Text PDF

We report on a heterodyne interferometric scanning near-field optical microscope developed for characterizing, at the nanometric scale, refractive index variations in thin films. An optical lateral resolution of 80 nm (lambda/19) and a precision smaller than 10(-4) on the refractive index difference have been achieved. This setup is suitable for a wide set of thin films, ranging from periodic to heterogeneous samples, and turns out to be a very promising tool for determining the optical homogeneity of thin films developed for nanophotonics applications.

View Article and Find Full Text PDF

We studied the influence of post-treatment rinsing after the formation of self-assembled polyelectrolyte films made with the weak base poly(allylamine hydrochloride) (PAH) and the strong acid poly(styrene sulfonate) (PSS). The stability of the film was studied using optical fixed-angle laser reflectometry to measure the release of polymeric material and AFM experiments to reveal the change of morphology and thickness. We found that the polymer films were stable upon rinsing when the pH was the same in the solution as that used in the buildup (pH 9).

View Article and Find Full Text PDF