Optical coherence microscopy (OCM) is an interferometric technique providing 3D images of biological samples with micrometric resolution and penetration depth of several hundreds of micrometers. OCM differs from optical coherence tomography (OCT) in that it uses a high numerical aperture (NA) objective to achieve high lateral resolution. However, the high NA also reduces the depth-of-field (DOF), scaling with 1/NA.
View Article and Find Full Text PDFFast, label-free, high-resolution, three-dimensional imaging platforms are crucial for high-throughput in vivo time-lapse studies of the anatomy of Caenorhabditis elegans, one of the most commonly used model organisms in biomedical research. Despite the needs, methods combining all these characteristics have been lacking. Here, we present label-free imaging of live Caenorhabditis elegans with three-dimensional sub-micrometer resolution using visible optical coherence microscopy (visOCM).
View Article and Find Full Text PDFWe present a novel extended-focus optical coherence microscope (OCM) attaining 0.7 μm axial and 0.4 μm lateral resolution maintained over a depth of 40 μm, while preserving the advantages of Fourier domain OCM.
View Article and Find Full Text PDFWe present a phase-shifting quantitative phase imaging technique providing high temporal and spatial phase stability and high acquisition speed. A piezoelectric microfabricated phase modulator allows tunable modulation frequencies up to the kHz range. After assessing the quantitative phase accuracy with technical samples, we demonstrate the high acquisition rate while monitoring cellular processes at temporal scales ranging from milliseconds to hours.
View Article and Find Full Text PDFTraditional Doppler OCT is highly sensitive to motion artifacts due to the dependence on the Doppler angle. This limits its accuracy in clinical practice. To overcome this limitation, we use a bidirectional dual beam technique equipped with a novel rotating scanning scheme employing a Dove prism.
View Article and Find Full Text PDFModern high-speed atomic force microscopes generate significant quantities of data in a short amount of time. Each image in the sequence has to be processed quickly and accurately in order to obtain a true representation of the sample and its changes over time. This paper presents an automated, adaptive algorithm for the required processing of AFM images.
View Article and Find Full Text PDF