Publications by authors named "Severin Schneebeli"

Geometric isomerism in mechanically interlocked systems-which arises when the axle of a mechanically interlocked molecule is oriented, and the macrocyclic component is facially dissymmetric-can provide enhanced functionality for directional transport and polymerization catalysis. We now introduce a kinetically controlled strategy to control geometric isomerism in [2]rotaxanes. Our synthesis provides the major geometric isomer with high selectivity, broadening synthetic access to such interlocked structures.

View Article and Find Full Text PDF

Peptide self-assembly is critical for biomedical and material discovery and production. While it is costly to experimentally test every possible peptide design, computational assessment provides an affordable solution to evaluate many designs and prioritize synthesis and characterization. Following a theoretical investigation, we present a systematic analysis of all-atom and coarse-grained simulations to predict peptide self-assembly.

View Article and Find Full Text PDF

Covalently linked molecular cages can provide significant advantages (including, but not limited to enhanced thermal and chemical stability) over metal-linked coordination cages. Yet, while large coordination cages can now be created routinely, it is still challenging to create chemically robust, covalently linked molecular cages with large internal cavities. This fundamental challenge has made it difficult, for example, to introduce endohedral functional groups into covalent cages to enhance their practical utility (e.

View Article and Find Full Text PDF

DNA nanostructures have emerged as promising nanomedical tools due to their biocompatibility and tunable behavior. Recent work has shown that DNA nanocages decorated with organic dendrimers strongly bind human serum albumin (HSA), yet the dynamic structures of these complexes remain uncharacterized. This theoretical and computational investigation elucidates the fuzzy interactions between dendritically functionalized cubic DNA nanocages and HSA.

View Article and Find Full Text PDF

Protein-S-glutathionylation is a post-translational modification involving the conjugation of glutathione to protein thiols, which can modulate the activity and structure of key cellular proteins. Glutaredoxins (GLRX) are oxidoreductases that regulate this process by performing deglutathionylation. However, GLRX has five cysteines that are potentially vulnerable to oxidative modification, which is associated with GLRX aggregation and loss of activity.

View Article and Find Full Text PDF

Molecules with bioactivity towards G protein-coupled receptors represent a subset of the vast space of small drug-like molecules. Here, we compare machine learning models, including dilated graph convolutional networks, that conduct binary classification to quickly identify molecules with activity towards G protein-coupled receptors. The models are trained and validated using a large set of over 600,000 active, inactive, and decoy compounds.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed a method to create helical ladder polymers with different spring constants using chirality-assisted synthesis.
  • These polymers maintain their shape under stress, behaving like traditional springs instead of unfolding.
  • The study found that increasing the diameter of the helix enhances molecular flexibility, providing guidelines for designing new spring-like materials with diverse mechanical properties.
View Article and Find Full Text PDF

The lack of biologically relevant protein structures can hinder rational design of small molecules to target G protein-coupled receptors (GPCRs). While ensemble docking using multiple models of the protein target is a promising technique for structure-based drug discovery, model clustering and selection still need further investigations to achieve both high accuracy and efficiency. In this work, we have developed an original ensemble docking approach, which identifies the most relevant conformations based on the essential dynamics of the protein pocket.

View Article and Find Full Text PDF

G protein-coupled receptors (GPCRs) are currently appreciated to be routed to diverse cellular platforms to generate both G protein-dependent and -independent signals. The latter has been best studied with respect to β-arrestin-associated receptor internalization and trafficking to signaling endosomes for extracellular signal-regulated kinase (ERK) activation. However, how GPCR structural and conformational variants regulate endosomal ERK signaling dynamics, which can be central in neural development, plasticity, and disease processes, is not well understood.

View Article and Find Full Text PDF

Peptide binding to membranes is common and fundamental in biochemistry and biophysics and critical for applications ranging from drug delivery to the treatment of bacterial infections. However, it is largely unclear, from a theoretical point of view, what peptides of different sequences and structures share in the membrane-binding and insertion process. In this work, we analyze three prototypical membrane-binding peptides (α-helical magainin, PGLa, and β-hairpin tachyplesin) during membrane binding, using molecular details provided by Markov state modeling and microsecond-long molecular dynamics simulations.

View Article and Find Full Text PDF

We synthesized some of the longest unimolecular oligo(-phenylene ethynylenes) (OPEs), which are fully substituted with electron-withdrawing ester groups. An iterative convergent/divergent (a.k.

View Article and Find Full Text PDF

The histone-like nucleoid structuring (H-NS) protein controls the expression of hundreds of genes in Gram-positive bacteria through its capability to coat and condense DNA. This mechanism requires the formation of superhelical H-NS protein filaments that are sensitive to temperature and salinity, allowing H-NS to act as an environment sensor. We use multiscale modeling and simulations to obtain detailed insights into the mechanism of H-NS filament's sensitivity to environmental changes.

View Article and Find Full Text PDF

Structure-based drug design targeting the SARS-CoV-2 virus has been greatly facilitated by available virus-related protein structures. However, there is an urgent need for effective, safe small-molecule drugs to control the spread of the virus and variants. While many efforts are devoted to searching for compounds that selectively target individual proteins, we investigated the potential interactions between eight proteins related to SARS-CoV-2 and more than 600 compounds from a traditional Chinese medicine which has proven effective at treating the viral infection.

View Article and Find Full Text PDF

Recent advances in computer hardware and software, particularly the availability of machine learning libraries, allow the introduction of data-based topics such as machine learning into the Biophysical curriculum for undergraduate and/or graduate levels. However, there are many practical challenges of teaching machine learning to advanced-level students in the biophysics majors, who often do not have a rich computational background. Aiming to overcome such challenges, we present an educational study, including the design of course topics, pedagogical tools, and assessments of student learning, to develop the new methodology to incorporate the basis of machine learning in an existing Biophysical elective course, and engage students in exercises to solve problems in an interdisciplinary field.

View Article and Find Full Text PDF

Large-scale conformational transitions in the spike protein S2 domain are required during host-cell infection of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) virus. Although conventional molecular dynamics simulations have been extensively used to study therapeutic targets of SARS-CoV-2, it is still challenging to gain molecular insight into the key conformational changes because of the size of the spike protein and the long timescale required to capture these transitions. In this work, we have developed an efficient simulation protocol that leverages many short simulations, a dynamic selection algorithm, and Markov state models to interrogate the structural changes of the S2 domain.

View Article and Find Full Text PDF

This work presents the first transition metal-free synthesis of oxygen-linked aromatic polymers by integrating iterative exponential polymer growth (IEG) with nucleophilic aromatic substitution (SAr) reactions. Our approach applies methyl sulfones as the leaving groups, which eliminate the need for a transition metal catalyst, while also providing flexibility in functionality and configuration of the building blocks used. As indicated by 1) H-H NOESY NMR spectroscopy, 2) single-crystal X-ray crystallography, and 3) density functional theory (DFT) calculations, the unimolecular polymers obtained are folded by nonclassical hydrogen bonds formed between the oxygens of the electron-rich aromatic rings and the positively polarized C-H bonds of the electron-poor pyrimidine functions.

View Article and Find Full Text PDF

By integrating various simulation and experimental techniques, we discovered that antimicrobial peptides (AMPs) may achieve synergy at an optimal concentration and ratio, which can be caused by aggregation of the synergistic peptides. On multiple time and length scales, our studies obtain novel evidence of how peptide coaggregation in solution can affect the disruption of membranes by synergistic AMPs. Our findings provide crucial details about the complex molecular origins of AMP synergy, which will help guide the future development of synergistic AMPs as well as applications of anti-infective peptide cocktail therapies.

View Article and Find Full Text PDF

Selective catalysis at the molecular level represents a cornerstone of chemical synthesis. However, it still remains an open question how to elevate tunable catalysis to larger length scales to functionalize whole polymer chains in a selective manner. We now report a hydrazone-linked tetrahedron with wide openings, which acts as a catalyst to size-selectively functionalize polydisperse polymer mixtures.

View Article and Find Full Text PDF

Selective monofunctionalization of substrates with distant, yet equally reactive functional groups is difficult to achieve, as it requires the second functional group to selectively modulate its reactivity once the first functional group has reacted. We now show that mechanically interlocked catalytic rings can effectively regulate the reactivity of stoppering groups in rotaxanes over a distance of about 2 nm. Our mechanism of communication is enabled by a unique interlocked design, which effectively removes the catalytic rings from the substrates by fast dethreading as soon as the first reaction has taken place.

View Article and Find Full Text PDF

The pituitary adenylate cyclase-activating polypeptide (PACAP)-selective PAC1 receptor (PAC1R, ADCYAP1R1) is a member of the vasoactive intestinal peptide (VIP)/secretin/glucagon family of G protein-coupled receptors (GPCRs). PAC1R has been shown to play crucial roles in the central and peripheral nervous systems. The activation of PAC1R initiates diverse downstream signal transduction pathways, including adenylyl cyclase, phospholipase C, MEK/ERK, and Akt pathways that regulate a number of physiological systems to maintain functional homeostasis.

View Article and Find Full Text PDF

Modeling peptide assembly from monomers on large time and length scales is often intractable at the atomistic resolution. To address this challenge, we present a new approach which integrates coarse-grained (CG), mixed-resolution, and all-atom (AA) modeling in a single simulation. We simulate the initial encounter stage with the CG model, while the further assembly and reorganization stages are simulated with the mixed-resolution and AA models.

View Article and Find Full Text PDF

Enantioselective electrophilic aromatic nitration methodology is needed to advance chirality-assisted synthesis (CAS). Reported here is an enantioselective aromatic nitration strategy operating with chiral diester auxiliaries, and it provides an enantioselective synthesis of a C -symmetric tribenzotriquinacene (TBTQ). These axially-chiral structures are much sought-after building blocks for CAS, but they were not accessible prior to this work in enantioenriched form without resolution of enantiomers.

View Article and Find Full Text PDF

Two ethynyl-derivatized isomers of bis(fulvalene)diiron (BFD, 1,1'-biferrocenylene) were prepared and covalently attached to glassy carbon electrodes through their ethynyl group by three different electrode modification methods. Cyclic voltammetry and square wave (SW) voltammetry were used to characterize surface coverages of 1.4-5.

View Article and Find Full Text PDF

Crystal-packing forces can have a significant impact on the relative stabilities of different molecules and their conformations. The magnitude of such effects is, however, not yet well understood. Herein we show, that crystal packing can completely overrule the relative stabilities of different stereoisomers in solution.

View Article and Find Full Text PDF

Nature has evolved selective enzymes for the efficient biosynthesis of complex products. This exceptional ability stems from adapted enzymatic pockets, which geometrically constrain reactants and stabilize specific reactive intermediates by placing electron-donating/accepting residues nearby. Here we perform an abiotic electrophilic aromatic substitution reaction, which is directed precisely through space.

View Article and Find Full Text PDF