Tissue engineering approaches have emerged recently to circumvent many limitations associated with current clinical practices. This elegant approach utilizes a natural/synthetic biomaterial with optimized physiomechanical properties to serve as a vehicle for delivery of exogenous stem cells and bioactive factors or induce local recruitment of endogenous cells for in situ tissue regeneration. Inspired by the natural microenvironment, biomaterials could act as a biomimetic three-dimensional (3D) structure to help the cells establish their natural interactions.
View Article and Find Full Text PDFOsteoconductive hydrogels can be fabricated by incorporating necessary growth factors and bioactive particles or simply utilizing the ability of the hydrogel itself to induce bone regeneration. The osteogenic inductive potential of the bioactive glass microparticles (BG MPs) has been well-studied. However, the role of the hydrogel embedding the BG MPs on the osteogenic differentiation of the encapsulated stem cells has not been well established.
View Article and Find Full Text PDF