Publications by authors named "Sevda Aslan"

Introduction: Bladder dysfunction and associated complications of the urinary system negatively impact the quality of life in children living with spinal cord injury (SCI). Pediatric lower urinary tract deficits include bladder over-activity, inefficient emptying, decreased compliance, and incontinence. Recent evidence in adults with SCI indicates significant improvements in bladder capacity and detrusor pressure following participation in an activity-based recovery locomotor training (ABR-LT) rehabilitative program.

View Article and Find Full Text PDF

Objective: Spinal cord injury (SCI) is classified as complete or incomplete depending on the extent of sensorimotor preservation below the injury level. However, individuals with complete SCIs can voluntarily activate paralyzed lower limb muscles alone or by engaging non-paralyzed muscles during neurophysiological assessments, indicating presence of residual pathways across the injury. However, similar phenomena have not been explored for the upper extremity (UE) muscles following cervical SCIs.

View Article and Find Full Text PDF

Profound dysfunctional reorganization of spinal networks and extensive loss of functional continuity after spinal cord injury (SCI) has not precluded individuals from achieving coordinated voluntary activity and gaining multi-systemic autonomic control. Bladder function is enhanced by approaches, such as spinal cord epidural stimulation (scES) that modulates and strengthens spared circuitry, even in cases of clinically complete SCI. It is unknown whether scES parameters specifically configured for modulating the activity of the lower urinary tract (LUT) could improve both bladder storage and emptying.

View Article and Find Full Text PDF

Study Design: Retrospective observational cohort study.

Objectives: To describe the trend in length of stay (LOS) and its association with the rate of individuals needing total assistance with bowel management upon discharge from inpatient spinal cord injury (SCI) rehabilitation facilities.

Setting: Participants enrolled in the National Spinal Cord Injury Model Systems (NSCIMS) database.

View Article and Find Full Text PDF

Neurogenic bowel dysfunction (NBD) following spinal cord injury (SCI) represents a major source of morbidity, negatively impacting quality of life and overall independence. The long-term changes in bowel care needs are not well-reported, preventing consensus on the natural course and optimal management of NBD following injury. To understand the changes in bowel management needs over time following SCI.

View Article and Find Full Text PDF

There is an increasing need to develop approaches that will not only improve the clinical management of neurogenic lower urinary tract dysfunction (NLUTD) after spinal cord injury (SCI), but also advance therapeutic interventions aimed at recovering bladder function. Although pre-clinical research frequently employs rodent SCI models, large animals such as the pig may play an important translational role in facilitating the development of devices or treatments. Therefore, the objective of this study was to develop a urodynamics protocol to characterize NLUTD in a porcine model of SCI.

View Article and Find Full Text PDF

Spinal cord injury (SCI) results in profound neurologic impairment with widespread deficits in sensorimotor and autonomic systems. Voluntary and autonomic control of bladder function is disrupted resulting in possible detrusor overactivity, low compliance, and uncoordinated bladder and external urethral sphincter contractions impairing storage and/or voiding. Conservative treatments managing neurogenic bladder post-injury, such as oral pharmacotherapy and catheterization, are important components of urological surveillance and clinical care.

View Article and Find Full Text PDF

To investigate and compare trunk control and muscle activation during uncompensated sitting in children with and without spinal cord injury (SCI). Static sitting trunk control in ten typically developing (TD) children (5 females, 5 males, mean (SD) age of 6 (2)y) and 26 children with SCI (9 females, 17 males, 5(2)y) was assessed and compared using the Segmental Assessment of Trunk Control (SATCo) test while recording surface electromyography (EMG) from trunk muscles. The SCI group scored significantly lower on the SATCo compared to the TD group.

View Article and Find Full Text PDF

Unstable blood pressure after spinal cord injury (SCI) is not routinely examined but rather predicted by level and completeness of injury (i.e., American Spinal Injury Association Impairment Scale AIS classification).

View Article and Find Full Text PDF

Characterization of residual neuromotor capacity after spinal cord injury (SCI) is challenging. The current gold standard for measurement of sensorimotor function after SCI, the International Society for Neurological Classification of Spinal Cord Injury (ISNCSCI) exam, seeks to determine isolated intentional muscle activation, however many individuals with SCI exhibit intentional movements and muscle activation patterns which are not confined to specific joint or muscle. Further, isolated muscle activation is a feature of the neuromuscular system that emerges during development, and thus may not be an appropriate measurement standard for children younger than 6.

View Article and Find Full Text PDF

This cohort study evaluates the feasibility of daily customized epidural stimulation configurations targeted for cardiovascular function in individuals with chronic, cervical motor-complete spinal cord injury.

View Article and Find Full Text PDF

Maximum inspiratory and expiratory pressure values (PI and PE) are indirect measures of respiratory muscle strength that, in healthy adults, are known to be significantly lower in women compared to men. In part, sex differences in breathing kinematics, lung size, body composition, muscle mass, and muscle fiber composition are thought to be responsible for these effects. However, it is not known whether respiratory muscle activation during maximum respiratory efforts is also sex-specific.

View Article and Find Full Text PDF

Exercise training is crucial to improve cardiovascular health and quality of life in people with spinal cord injuries (SCI). A key limitation is the lack of validated submaximal tests to evaluate and predict cardiovascular fitness in this population. The purpose of this study was to validate a submaximal test to predict maximal oxygen consumption for individuals with SCI.

View Article and Find Full Text PDF

Disruption of motor and autonomic pathways induced by spinal cord injury (SCI) often leads to persistent low arterial blood pressure and orthostatic intolerance. Spinal cord epidural stimulation (scES) has been shown to enable independent standing and voluntary movement in individuals with clinically motor complete SCI. In this study, we addressed whether scES configured to activate motor lumbosacral networks can also modulate arterial blood pressure by assessing continuous, beat-by-beat blood pressure and lower extremity electromyography during supine and standing in seven individuals with C5-T4 SCI.

View Article and Find Full Text PDF

Children with spinal cord injury (SCI) are at high risk for developing complications due to respiratory motor control deficits. However, underlying mechanisms of these abnormalities with respect to age, development, and injury characteristics are unclear. To evaluate the effect of SCI and age on respiratory motor control in children with SCI, we compared pulmonary function and respiratory motor control outcome measures in healthy typically developing (TD) children to age-matched children with chronic SCI.

View Article and Find Full Text PDF

Objective: To evaluate the effects of pressure threshold respiratory training (RT) on heart rate variability and baroreflex sensitivity in persons with chronic spinal cord injury (SCI).

Design: Before-after intervention case-controlled clinical study.

Setting: SCI research center and outpatient rehabilitation unit.

View Article and Find Full Text PDF

The objective of this study was to examine the feasibility of a full-scale investigation of the neurophysiological mechanisms of COPD-induced respiratory neuromuscular control deficits. Characterization of respiratory single- and multi-muscle activation patterns using surface electromyography (sEMG) were assessed along with functional measures at baseline and following 21±2 (mean±SD) sessions of respiratory motor training (RMT) performed during a one-month period in four patients with GOLD stage II or III COPD. Pre-training, the individuals with COPD showed significantly increased (p<0.

View Article and Find Full Text PDF

Pulmonary and cardiovascular dysfunctions are leading causes of morbidity and mortality in patients with chronic Spinal Cord Injury (SCI). Impaired respiratory motor function and decreased Baroreflex Sensitivity (BS) are predictors for the development of cardiopulmonary disease. This observational case-controlled clinical study was undertaken to investigate if respiratory motor control deficits in individuals with SCI affect their ability to perform the Valsalva maneuver, and to determine if a sustained Maximum Expiratory Pressure (MEP) effort can serve as an acceptable maneuver for determination of the BS in the event that the Valsalva maneuver cannot be performed.

View Article and Find Full Text PDF
Article Synopsis
  • This study examined how respiratory motor training (RMT) impacts lung function and cardiovascular responses in people with chronic spinal cord injury (SCI) who suffer from orthostatic hypotension (OH).
  • Conducted as a case-controlled clinical study, it involved 21 participants, including those with SCI and healthy controls, who underwent RMT over four weeks.
  • Results showed that RMT significantly improved pulmonary function and eliminated OH in some participants, enhancing sympathetic nervous system responses and overall cardiovascular health.
View Article and Find Full Text PDF

This case-controlled clinical study was undertaken to investigate to what extent pulmonary function in individuals with chronic spinal cord injury (SCI) is affected by posture. Forced vital capacity (FVC), forced expiratory volume in one second (FEV1), maximal inspiratory pressure (PImax) and maximal expiratory pressure (PEmax) were obtained from 27 individuals with chronic motor-complete (n=13, complete group) and motor-incomplete (n=14, incomplete group) C2-T12 SCI in both seated and supine positions. Seated-to-supine changes in spirometrical (FVC and FEV1) and airway pressure (PImax and PEmax) outcome measures had different dynamics when compared in complete and incomplete groups.

View Article and Find Full Text PDF

Surface Electromyography (EMG) is a standard method used in clinical practice and research to assess motor function in order to help with the diagnosis of neuromuscular pathology in human and animal models. EMG recorded from trunk muscles involved in the activity of breathing can be used as a direct measure of respiratory motor function in patients with spinal cord injury (SCI) or other disorders associated with motor control deficits. However, EMG potentials recorded from these muscles are often contaminated with heart-induced electrocardiographic (ECG) signals.

View Article and Find Full Text PDF

This prospective case-controlled clinical study was undertaken to investigate to what extent the manually assisted treadmill stepping locomotor training with body weight support (LT) can change respiratory function in individuals with chronic spinal cord injury (SCI). Pulmonary function outcomes (forced vital capacity /FVC/, forced expiratory volume one second /FEV1/, maximum inspiratory pressure /PImax/, maximum expiratory pressure /PEmax/) and surface electromyographic (sEMG) measures of respiratory muscles activity during respiratory tasks were obtained from eight individuals with chronic C3-T12 SCI before and after 62±10 (mean±SD) sessions of the LT. FVC, FEV1, PImax, PEmax, amount of overall sEMG activity and rate of motor unit recruitment were significantly increased after LT (p<0.

View Article and Find Full Text PDF

During breathing, activation of respiratory muscles is coordinated by integrated input from the brain, brainstem, and spinal cord. When this coordination is disrupted by spinal cord injury (SCI), control of respiratory muscles innervated below the injury level is compromised leading to respiratory muscle dysfunction and pulmonary complications. These conditions are among the leading causes of death in patients with SCI.

View Article and Find Full Text PDF

Object: This study was designed to develop an objective and sensitive spinal cord injury (SCI) characterization protocol based on surface electromyography (EMG) activity.

Methods: Twenty-four patients at both acute and chronic time points post-SCI, as well as 4 noninjured volunteers, were assessed using neurophysiological and clinical measures of volitional motor function. The EMG amplitude was recorded from 15 representative muscles bilaterally during standardized maneuvers as a neurophysiological assessment of voluntary motor function.

View Article and Find Full Text PDF