Publications by authors named "Sevan Menachekanian"

Understanding the adsorption of organic molecules on metals is important in numerous areas of surface science, including electrocatalysis, electrosynthesis, and biosensing. While thiols are commonly used to tether organic molecules on metals, it is desirable to broaden the range of anchoring groups. In this study, we use a combined spectroelectrochemical and computational approach to demonstrate the adsorption of 4-cyanophenols (CPs) on polycrystalline gold.

View Article and Find Full Text PDF

Understanding breaking and formation of Lewis bonds at an electrified interface is relevant to a large range of phenomena, including electrocatalysis and electroadsorption. The complexities of interfacial environments and associated reactions often impede a systematic understanding of this type of bond at interfaces. To address this challenge, we report the creation of a main group classic Lewis acid-base adduct on an electrode surface and its behavior under varying electrode potentials.

View Article and Find Full Text PDF

Ionic liquids (ILs) have both fundamental and practical value in interfacial science and electrochemistry. However, understanding their behavior near a surface is challenging because of strong Coulomb interactions and large and irregular ionic sizes, which affect both their structure and energetics. To understand this problem, we present a combined experimental and computational study using a vibrational probe molecule, 4-mercaptobenzonitrile, inserted at the junction between a metal and a variety of ILs.

View Article and Find Full Text PDF

Understanding ionic structure and electrostatic environments near a surface has both fundamental and practical value. In electrochemistry, especially when room temperature ionic liquids (ILs) are involved, the complex ionic structure near the interface is expected to crucially influence reactions. Here we report evidence that even in dilute aqueous solutions of several ILs, the ions aggregate near the surface in ways that are qualitatively different from simple electrolytes.

View Article and Find Full Text PDF