Curr Opin Cell Biol
August 2019
It has been over 20 years since the identification of the first GTPases that regulate mitochondrial fusion in drosophila, yeast, and mammalian cells. While the molecular identification of these players solidified the new field of mitochondrial dynamics, cell imaging had established the dynamic properties of mitochondria over a century before. The genetic dissection of mitochondrial fusion, fission, and positioning within cells cemented our understanding of the essential nature of this plasticity in health and disease.
View Article and Find Full Text PDFSNARE-mediated membrane fusion is required for membrane trafficking as well as organelle biogenesis and homeostasis. The membrane fusion reaction involves sequential formation of hemifusion intermediates, whereby lipid monolayers partially mix on route to complete bilayer merger. Studies of the Saccharomyces cerevisiae lysosomal vacuole have revealed many of the fundamental mechanisms that drive the membrane fusion process, as well as features unique to organelle fusion.
View Article and Find Full Text PDFUpon vacuolar lysosome (or vacuole) fusion in S. cerevisiae, a portion of membrane is internalized and catabolized. Formation of this intralumenal fragment (ILF) is important for organelle protein and lipid homeostasis and remodeling.
View Article and Find Full Text PDFMitochondrial fusion occurs in many eukaryotes, including animals, plants, and fungi. It is essential for cellular homeostasis, and yet the underlying mechanisms remain elusive. Comparative analyses and phylogenetic reconstructions revealed that fungal Fzo1 and animal Mitofusin proteins are highly diverged from one another and lack strong sequence similarity.
View Article and Find Full Text PDFWhen marked for degradation, surface receptor and transporter proteins are internalized and delivered to endosomes where they are packaged into intralumenal vesicles (ILVs). Many rounds of ILV formation create multivesicular bodies (MVBs) that fuse with lysosomes exposing ILVs to hydrolases for catabolism. Despite being critical for protein degradation, the molecular underpinnings of MVB-lysosome fusion remain unclear, although machinery underlying other lysosome fusion events is implicated.
View Article and Find Full Text PDFPeroxisomes function together with mitochondria in a number of essential biochemical pathways, from bile acid synthesis to fatty acid oxidation. Peroxisomes grow and divide from pre-existing organelles, but can also emerge de novo in the cell. The physiological regulation of de novo peroxisome biogenesis remains unclear, and it is thought that peroxisomes emerge from the endoplasmic reticulum in both mammalian and yeast cells.
View Article and Find Full Text PDFLysosomal membrane fusion mediates the last step of the autophagy and endocytosis pathways and supports organelle remodeling and biogenesis. Because fusogenic proteins and lipids concentrate in a ring at the vertex between apposing organelle membranes, the encircled area of membrane can be severed and internalized within the lumen as a fragment upon lipid bilayer fusion. How or why this intralumenal fragment forms during fusion, however, is not entirely clear.
View Article and Find Full Text PDFThere has been evidence that mitochondrial fragmentation is required for apoptosis, but the molecular links between the machinery regulating dynamics and cell death have been controversial. Indeed, activated BAX and BAK can form functional channels in liposomes, bringing into question the contribution of mitochondrial dynamics in apoptosis. We now demonstrate that the activation of apoptosis triggers MAPL/MUL1-dependent SUMOylation of the fission GTPase Drp1, a process requisite for cytochrome c release.
View Article and Find Full Text PDFWe identified a form of cell death called "liponecrosis." It can be elicited by an exposure of the yeast Saccharomyces cerevisiae to exogenous palmitoleic acid (POA). Our data imply that liponecrosis is: (1) a programmed, regulated form of cell death rather than an accidental, unregulated cellular process and (2) an age-related form of cell death.
View Article and Find Full Text PDFMacromitophagy controls mitochondrial quality and quantity. It involves the sequestration of dysfunctional or excessive mitochondria within double-membrane autophagosomes, which then fuse with the vacuole/lysosome to deliver these mitochondria for degradation. To investigate a physiological role of macromitophagy in yeast, we examined how theatg32Δ-dependent mutational block of this process influences the chronological lifespan of cells grown in a nutrient-rich medium containing low (0.
View Article and Find Full Text PDF