Publications by authors named "Seva Ioussoufovitch"

Significance: Hyperspectral time-resolved (TR) near-infrared spectroscopy offers the potential to monitor cytochrome-c-oxidase (oxCCO) and blood oxygenation in the adult brain with minimal scalp/skull contamination. We introduce a hyperspectral TR spectrometer that uses compressive sensing to minimize acquisition time without compromising spectral range or resolution and demonstrate oxCCO and blood oxygenation monitoring in deep tissue.

Aim: Develop a hyperspectral TR compressive sensing spectrometer and use it to monitor oxCCO and blood oxygenation in deep tissue.

View Article and Find Full Text PDF

Near-infrared spectroscopy (NIRS) can measure tissue blood content and oxygenation; however, its use for adult neuromonitoring is challenging due to significant contamination from their thick extracerebral layers (ECL; primarily scalp and skull). This report presents a fast method for accurate estimation of adult cerebral blood content and oxygenation from hyperspectral time resolved NIRS (trNIRS) data. A two-phase fitting method, based on a two-layer head model (ECL and brain), was developed.

View Article and Find Full Text PDF

Time-resolved (TR) spectroscopy is well-suited to address the challenges of quantifying light absorbers in highly scattering media such as living tissue; however, current TR spectrometers are either based on expensive array detectors or rely on wavelength scanning. Here, we introduce a TR spectrometer architecture based on compressed sensing (CS) and time-correlated single-photon counting. Using both CS and basis scanning, we demonstrate that-in homogeneous and two-layer tissue-mimicking phantoms made of Intralipid and Indocyanine Green-the CS method agrees with or outperforms uncompressed approaches.

View Article and Find Full Text PDF

The dynamics of cerebral blood flow (CBF) at the onset of hypoglycemia may play a key role in hypoglycemia unawareness; however, there is currently a paucity of techniques that can monitor adult CBF with high temporal resolution. Herein, we investigated the use of diffuse correlation spectroscopy (DCS) to monitor the dynamics of CBF during insulin-induced hypoglycemia in adults. Plasma glucose concentrations, cortisol levels, and changes in CBF were measured before and during hypoglycemia in 8 healthy subjects.

View Article and Find Full Text PDF

Significance: Current guidelines for rheumatoid arthritis (RA) management recommend early treatment with disease modifying antirheumatic drugs (DMARDs). However, DMARD treatment fails in 30% of patients and current monitoring methods can only detect failure after 3 to 6 months of therapy.

Aim: We investigated whether joint blood flow (BF), quantified using dynamic contrast-enhanced time-resolved near-infrared spectroscopy, can monitor disease activity and treatment response in a rat model of RA.

View Article and Find Full Text PDF

Joint hypoxia plays a central role in the progression and perpetuation of rheumatoid arthritis (RA). Thus, optical techniques that can measure surrogate markers of hypoxia such as blood flow, oxyhemoglobin, deoxyhemoglobin, and oxygen saturation are being developed to monitor RA. The purpose of the current study was to compare the sensitivity of these physiological parameters to arthritis.

View Article and Find Full Text PDF