The dsDNA-selective fluorescent-dye-based DNA damage assay was developed for DNA-encoded library (DEL) synthesis. For the various DEL synthesis conditions, the assay was validated through cross-checking with high-performance liquid chromatography (HPLC) analysis, and the fact was confirmed that the usage of a specific ratio of organic solvent can critically induce DNA damage. Also, the applicability of the assay was confirmed through the screening of the DNA-damaging condition of the on-DNA amide coupling reaction and Pd-catalyzed on-DNA -arylation reaction.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
August 2024
This study aims to investigate how inert gas affects the partial pressure of alveolar and venous blood using a fast and accurate operator splitting method (OSM). Unlike previous complex methods, such as the finite element method (FEM), OSM effectively separates governing equations into smaller sub-problems, facilitating a better understanding of inert gas transport and exchange between blood capillaries and surrounding tissue. The governing equations were discretized with a fully implicit finite difference method (FDM), which enables the use of larger time steps.
View Article and Find Full Text PDFBoric acid (B(OH)) plays an important physiological role and is widely used as a food preservative and an antiseptic. Various colorimetric, fluorescent probes have been developed to detect boric acid; however, most of them could not discriminate boric acid over boronic acids (R-B(OH)) or are limited to boronic acid sensors. Therefore, the development of boric acid-selective probes is necessary.
View Article and Find Full Text PDFHetero-dinuclear synergic catalysis is a promising approach for improving catalytic performance. However, employing it is challenging because the design principles for the metal complex are still not well understood. Further, these complexes have a broader set of possibilities than mononuclear or homometallic systems, increasing the time and effort required to understand them.
View Article and Find Full Text PDFSelective detection of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) which are less charged molecules than adenosine triphosphate (ATP) or pyrophosphate (PPi) in aqueous solution has been considered challenging because AMP and ADP have relatively low binding affinity for phosphate receptors. In this study, colorimetric discrimination of nucleoside phosphates was achieved based on catalytic signal amplification through the activation of artificial peroxidase. This method showed high selectivity for AMP and ADP over ATP and PPi, unlike previous phosphate sensors that use Zn-dipicolylamine-based receptors.
View Article and Find Full Text PDFThe level of human serum albumin (HSA) in biological fluids is a key health indicator and its quantitative determination has great clinical importance. In this study, we developed a selective and sensitive fluorescent HSA probe by fluorescence-based high-throughput screening of a set of fluorescent thieno[3,2-]pyridine-5()-one derivatives against major plasma proteins: HSA, bovine serum albumin (BSA), globulin, fibrinogen, and transferrin. The fluorophore chosen finally () showed noticeable fluorescence enhancement in the presence of HSA (160-fold increase), and it exhibited rapid response, high sensitivity (detection limit 8 nM), and the ability to clearly distinguish HSA from BSA in pH 9 buffer condition.
View Article and Find Full Text PDFCation-binding salen nickel catalysts were developed for the enantioselective alkynylation of trifluoromethyl ketones in high yield (up to 99 %) and high enantioselectivity (up to 97 % ee). The reaction proceeds with substoichiometric quantities of base (10-20 mol % KOt-Bu) and open to air. In the case of trifluoromethyl vinyl ketones, excellent chemo-selectivity was observed, generating 1,2-addition products exclusively over 1,4-addition products.
View Article and Find Full Text PDFAldehydes with long alkyl chains are important biomarkers, but chemosensors for the detection of the aldehydes have been rarely reported. Herein, a chemosensor based on hydroxylamine-functionalized polydiacetylene (PDA) was developed for the selective detection of heptanal, which contains a long alkyl chain. The hydroxylamine group of PDA reacts with the aldehyde group of heptanal, while hydrophobic interactions between the alkyl chains of PDA and heptanal occur simultaneously.
View Article and Find Full Text PDFThe development of artificial peroxidases has attracted great interest because of their applications in various fields such as the chemical industry and biosensing. In this study, 2,6-bis[(bis(2-pyridylmethyl)amino)-methyl]-4-methylphenol (H-bpmp) complexes with various transition metal ions have been investigated as artificial peroxidases. Among these metal complexes, the [Mn2(bpmp)]3+ complex showed the highest peroxidase-like activity as determined by a colorimetric assay using 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and H2O2.
View Article and Find Full Text PDFOrg Biomol Chem
September 2016
In this study, we report a direct fluorometric assay for butyrylcholinesterase (BChE) activity and screening of its inhibitor, using a fluorescent substrate. 2-(2-(5,6-Dimethoxy-1,3-dioxoisoindolin-2-yl)acetoxy)-N,N,N-trimethylethan-1-ammonium iodide (1) was hydrolyzed by BChE, and its fluorescence was quenched by an intramolecular photoinduced electron transfer process. The resulting change in fluorescence provided a facile method for real-time BChE activity testing.
View Article and Find Full Text PDF