Publications by authors named "Seungyeon Hwang"

Introduction: Salivary gland dysfunction, often resulting from salivary gland obstruction-induced inflammation, is a prevalent condition. Corticosteroid, known for its anti-inflammatory and immunomodulatory properties, is commonly prescribed in clinics. This study investigates the therapeutic implications and potential side effects of dexamethasone on obstructive sialadenitis recovery using duct ligation mice and salivary gland organoid models.

View Article and Find Full Text PDF

Salivary gland dysfunction worsens the quality of life, but treatment for restoration of salivary gland function is limited. Although previous reports have demonstrated the therapeutic potentials of extracellular vesicles (EVs) in different preclinical models, the role of EVs in salivary glands remains elusive. Furthermore, little is known about the roles of salivary gland-derived EVs in tissue repair or regeneration compared to other EVs.

View Article and Find Full Text PDF

Salivary glands that produce and secrete saliva, which is essential for lubrication, digestion, immunity, and oral homeostasis, consist of diverse cells. The long-term maintenance of diverse salivary gland cells in organoids remains problematic. Here, we establish long-term murine and human salivary gland organoid cultures.

View Article and Find Full Text PDF

NUCB2/nesfatin-1 known to regulate appetite and energy homeostasis is expressed not only in the hypothalamus, but also in various organs and tissues. Our previous reports also demonstrated that NUCB2/nesfatin-1 was expressed in the reproductive organs, including the ovaries, uterus, and testes of mice. However, it is yet known whether NUCB2/nesfatin-1 is expressed in the oviduct and how its expression is regulated.

View Article and Find Full Text PDF

The surface potential of nanoparticles plays a key role in numerous applications, such as drug delivery and cellular uptake. The estimation of the surface potential of nanoparticles as drug carriers or contrast agents is important for the design of nanoparticle-based biomedical platforms. Herein, we report the direct measurement of the surface potential of individual gold nanorods (GNRs) via Kelvin probe force microscopy (KPFM) at the nanoscale.

View Article and Find Full Text PDF

Biomedical in vivo sensing methods in the near-infrared (NIR) range, which that provide relatively high photon transparency, separation from auto-fluorescence background, and extended sensitivity, are being used increasingly for non-invasive mapping and monitoring of molecular events in cancer cells. In this study, we fabricated an NIR fluorogenic nanosensor based on the nanoparticle surface energy transfer effect, by conjugation of fluorescent proteolytic enzyme-specific cleavable peptides with gold nanorods (GNRs). Membrane-anchored membrane type 1-matrix metalloproteinases (MT1-MMPs), a family of zinc-dependent proteolytic enzymes, can induce the metastatic potential of cancer cells by promoting degradation of the extracellular matrix.

View Article and Find Full Text PDF

A synthetic process for constructing an organo-metal nanohybrid is described. This process uses polyaniline as a ligand in order to fabricate magnetic nanoparticles. This nanohybrid shows imaging potential uses as a magnetic resonance imaging contrast agent and a redox-sensing probe simultaneously both in vitro and in vivo.

View Article and Find Full Text PDF

In this study, we developed the maleimidyl magnetic nanoplatform, which enables functional targeting of a biomarker-specific moiety for molecular imaging via MRI. The maleimide group of the maleimidyl magnetic nanoplatform is conjugated with a thiol group without additional crosslinkers and side products. A physicochemical analysis was conducted to verify the effectiveness of the maleimidyl magnetic nanoplatform, and the existence of the maleimidyl group was investigated using the platform.

View Article and Find Full Text PDF

We describe the development of biomarker-sensitive nanoprobes based on nanoparticle surface energy transfer (NSET) effect that enabling recognition of the expression of membrane type-1 matrix metalloproteinase (MT1-MMP) anchored on invasive cancer cells and its proteolytic activity simultaneously. First of all, we confirmed invasiveness of cancer cell lines (HT1080 and MCF7) via migration and invasion assay. We also prepared gold nanoparticle (GNP) acts as a quencher for fluorescein isothiocyanate (FITC).

View Article and Find Full Text PDF

Aims: To determine whether cyanidin-3-O-β-D-glucopyranoside (C3G) fraction from mulberry fruit pigment has protective effects against bladder dysfunction on streptozotocin-induced diabetic rats

Methods: Sprague-Dawley rats were divided into three groups (n = 12 in each): normal, diabetes (DM), and DM treated with C3G fraction (DM + C3G). The DM and DM + C3G groups received a single injection of streptozotocin (50 mg/kg) intraperitoneally. Four weeks after the induction of diabetes, the DM + C3G group was treated with daily oral C3G (10 mg/kg) dissolved in water, for 8 weeks.

View Article and Find Full Text PDF